Journal of Applied Biological Sciences

[ ]
IH E E E-ISSN: 2146-0108 15(3): 294-309, 2021

Research Article

EFFECT OF IN-VITRO AND IN-VIVO MODELS OF DIABETES ON
AKT PATHWAY IN PERIPHERAL BLOOD LYMPHOCYTES

Melinda Nongbet Sohlang™, “*' Suktilang Majaw

Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong,
793022, Meghalaya, India

*Corresponding Author:
E-mail: smajaw2021@gmail.com

(Received 20™ October 2020; accepted 07" March 2021)

ABSTRACT. In this study, we investigated the effect of in-vitro and in-vivo models of diabetes on AKT
phosphorylation and its downstream targets. For the in-vitro model, peripheral blood lymphocytes (PBL)
were incubated with high glucose (Glc) or palmitic acid (PA) concentrations while for the in-vivo model,
PBL was isolated from alloxan-induced diabetic mice. PBL was then examined for triglyceride content,
lipid accumulation, enzyme activities, and phosphorylation state of AKT, glycogen synthase kinase-3f
(GSK3p) and voltage-gated anion channel (VDAC). CD4/CD8 ratio and pro-inflammatory profile were
monitored as indicators of lymphocyte function. Glc-/PA-exposed PBL demonstrated increased triglyceride
content and lipid droplets. This was accompanied by increased acetyl CoA carboxylase and decreased
carnitine palmitoyltransferase activity while glycogen synthase activity was unchanged. Glc- and PA-
exposed PBL showed decreased pAKT-, pGSK3p-protein expression. Interestingly, relative to pVDAC
expression, Glc- and PA-exposed PBL showed contrasting results. An altered CD4/CD8 ratio with elevated
pro-inflammatory profile was noted indicating impaired lymphocyte function. Results of the in-vivo model
were consistent with those of cultured PBL except the data of pVDAC expression showed resemblance to
those of Glc-incubated PBL. These results demonstrate that diabetic conditions can reduce the expression
of AKT and its downstream targets, GSK3p which might contribute to impaired lymphocyte function.
Contrasting results on pVDAC expression under high Glc and PA suggests the possible involvement of
other candidate substrates downstream to GSK3p.
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INTRODUCTION

Nutrients such as glucose and fatty acid play crucial roles in immune signaling and
immune cell functions [1]. Imbalance in these nutrients can disrupt the fate of immune
cells as noticed in a range of diseases. Diabetes is a disease with elevated circulating
glucose and free fatty acids known to harm immune cells [2, 3] including lymphocytes
[4, 5]. Impaired lymphocyte function has been linked to changes in lymphocyte
metabolism in a study on alloxan-induced diabetes [4].

Lymphocytes homeostasis requires the coordination of various signaling pathways
involved in metabolic processes. AKT signaling pathway is fundamentally important as
it controls nutrient uptake and cellular metabolism. AKT is a serine/threonine kinase that
functions mostly by phosphorylating downstream targets such as other protein kinases,
apoptotic proteins, and transcription factors [6, 7]. Additionally, it regulates glycogen
synthase kinase3p (GSK3p) protein which in turn phosphorylate other proteins such as
voltage-dependent anion channel (VDAC). VDAC is present at the outer mitochondrial
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membrane and has a task of transporting metabolites to enable the mitochondria to
maintain membrane potential. Adverse changes in mitochondrial membrane potential are
disadvantageous to cell metabolism and can even lead to death [8]. Besides, GSK3f has
been identified as a key mediator of pro-inflammatory cytokine production [9, 10].

Disruption of AKT pathways has been linked to cellular dysfunction and numerous
diabetic complications [11, 12, 13]. Although in diabetes, glucose and palmitic acid levels
are high, their levels might be variable due to various physiological and endocrine factors.
Therefore, we designed in-vitro experiments to determine lymphocyte dysfunction
induced by glucose (Glc) or palmitic acid (PA) overload in peripheral blood lymphocytes
(PBL) isolated from mice. In the present study, we investigated the effect of in-vitro and
in-vivo diabetes on AKT phosphorylation and its downstream targets in peripheral blood
lymphocytes isolated from mice.

MATERIALS AND METHODS

Reagents

Alloxan monohydrate, histopaque-1077, palmitic acid, bovine serum albumin, and
protease inhibitor cocktail were purchased from Sigma, USA. RPMI-1640, fetal bovine
serum, phytohemagglutinin were purchased from Gibco, USA. Protein A/G-Sepharose
was from Abcam, USA, nitrocellulose membrane (0.2 um), chemiluminescence substrate
was from Bio-Rad, USA. Glucose was from Himedia, India while other chemicals and
reagents of analytical grade were from Himedia, India, and Sisco Research Laboratories,
India.

Animal

Male Swiss albino mice (25-30 g) were procured from Pasteur Institute, Shillong, and
acclimatized for 7 days before experimentation. The mice were housed under standard
conditions of 22°C, 12:12 h dark and light cycle, fed water, and standard pelleted diet ad
libitum. Institutional Ethical Clearance (dated 15" December, 2015) was obtained for
conducting the experiments on the mice model.

Peripheral blood lymphocytes isolation

Mice blood was collected retro-orbitally into heparin tubes, diluted with phosphate
buffer saline (PBS, pH 7.2), and then loaded to histopaque-1077 following which the
tubes were centrifuged at 800rpm for 15min. The peripheral blood lymphocytes (PBL)
cell layer was then collected and washed twice in PBS [14].

In-vitro experimental design

Isolated PBL (1 x 108 cells) are cultured in RPMI-1640 medium containing glucose
(Gibco, cat no. 11875093) at 37°C in a 5% CO2 incubator. The medium was supplemented
with 10% fetal bovine serum, 100 U/ml streptomycin, 200 U/ml penicillin,
phytohemagglutinin, and either with 40 mM (Glc) [15] or 150 uM (PA) [16] for 72 h to
mimic conditions of hyperglycemia/ hyperlipidemia respectively.
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Preparation of palmitic acid

Palmitic acid was prepared as a stock solution of 1200 mM dissolved in 100 % ethanol
at 70°C. This solution was complexed with Bovine serum albumin (BSA) by shaking for
1 h at 50°C [17]. The fatty acid to BSA molar ratio was at 3:1 [18]. To normalize the
effect of the solvents used to dissolve PA, control groups received the same volume of
ethanol-BSA in the absence of PA.

Media D-glucose concentration for in-vitro model

The medium glucose concentration for the in-vitro model was determined by the
coupled enzyme activities of horseradish peroxidase and glucose oxidase [19]. 10 ul of
the medium was analyzed in a 1ml total reaction volume containing 1.75 mM each of 4-
aminoantipyrine and N-ethyl-N-sulfopropyl-m-toluidine as the chromophore solution,
120 mM sodium phosphate, pH 6.0, 2.7 U/ml HRP. The reaction was started by the
addition of 1.6 U/ml glucose oxidase. The solution was left to stand for 45-60 min at 25
°C before taking the absorbance reading at A550 nm. The concentration was calculated
from the standard curve made using D-glucose at varying concentrations.

In-vivo experimental design

Peripheral blood lymphocytes isolated from alloxan-induced diabetic mice was used
as the in-vivo model. Diabetes (blood glucose level <200 mg/dl) was induced by injecting
alloxan monohydrate (Sigma, USA, cat no. A7413-25G) intravenously at a dose of 60
mg/kg b.w. [20] dissolved in sodium acetate buffer (0.15 M, pH 4.5) [21]. An equal
volume of the buffer was injected into normal control mice. On the 7" day, blood was
collected for isolation of PBL [4].

Intraperitoneal Glucose tolerance test (IPGTT), intraperitoneal insulin tolerance test
(IPITT), and measurement of insulin level for diabetic mice

Mice were fasted for 16 h before conducting these two experiments. To conduct
IPGTT, mice were administered with glucose (2 mg/kg b.w.) intraperitoneally (i.p.).
Following injection, blood glucose level was estimated at 0, 30, 60, and 120 min by using
a standard glucometer. For IPITT, insulin (0.75 U/kg b.w) was administered via the i.p.
route followed by blood glucose level measurement at 0, 30, 60, 120 min. The total area
under the curve (AUC) which is the average of the total of blood glucose in two different
time intervals was calculated for blood glucose level representation [22]. Insulin was
quantified in mU/L using experimental kits according to the manufacturer’s instructions
(Fine Test, China, cat no. EM0260).

Lipid accumulation determined using Oil red O stain and by measuring intracellular
triglyceride (TG) level for in-vitro and in-vivo models

Lipid accumulation

Isolated PBL were washed in PBS, fixed in 4% paraformaldehyde for 10 min at room
temperature. The formaldehyde was discarded, cells washed, and incubated for another 1
h. The fixative was then washed with distilled water followed by a 60 % isopropanol wash
for 5 min at room temperature. The PBL was then smeared onto slides and air-dried at
room temperature. Slides were then stained with Oil red O (0.5% wi/v stock solution
prepared in 95% isopropyl alcohol) for 15 min and counterstained with hematoxylin. The
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excess stain from slides was removed using distilled water, then mounted on an aqueous
mounting medium, and PBL with red positively stained lipid droplets (in %) are counted
immediately [23].

Intracellular triglyceride

Intracellular triglyceride (TG) level (in mmol/L) was quantified according to the
manufacturer’s instruction using a triglyceride kit (Abcam, cat no. ab65336). Briefly,
isolated PBL from in vitro and in vivo models were washed with PBS and homogenized
in 1 ml of NP40. The samples were then heated to 80°C in a water bath until the NP40
becomes cloudy. This was then cooled down to room temperature and centrifuged for 2
min. 50 pL of sample and standard was then added to sample and standard wells
respectively. 2 uL of lipase and assay buffer each was added to all the wells and incubated
for 20 min at room temperature. Next 50 uL of TG mix (containing assay buffer, TG
probe, and TG enzyme mix) was added to all the wells and mixed properly. After a 60
min incubation in the dark, the output was measured in a microplate reader (Bio-Rad 680
Plate reader) at A570 nm.

Enzymes activities determination for in-vitro and in-vivo models

Mitochondrial fraction preparation for Carnitine palmitoyltransferase (CPT) assay

Peripheral blood lymphocytes was incubated for 10 min in RSB-hypo buffer
containing a 1% protease inhibitor cocktail and swollen cells disrupted using Dounce
homogenizer [24]. 1.5 mL of the homogenized mixture was immediately mixed with 2.5X
mitochondrial isolation buffer (525 mM mannitol, 175 mM sucrose, 12.5 mM tris, 2.5
mM EDTA, pH 7.5) followed by centrifugation at 1300 g for 10 min at 4°C. The
supernatant was then centrifuged at 17000 g for 15 min. The resulting mitochondrial
pellet was resuspended in buffer (70 mM sucrose, 220 mM mannitol, 2 mM HEPES, 1
mM EDTA, pH7.4).

CPT assay

Assay (A) contains 116 mM Tris, pH 8, 1.1 mM EDTA, 0.035 mM palmitoyl CoA,
0.12 mM DTNB, 0.1% TritonX-100, 1.1 mM I1(-)-carnitine and 100 pul of the sample.
Assay (B) contains the reaction mix without I1(-)-carnitine. The assay which started with
the addition of the sample follows the release of free CoA from palmitoyl CoA using the
reagent 5, 5’-dithiobis(2-nitobenzoate) (DTNB) at A412 nm. The difference in reaction
rates for assay A and B equates to CPT activity [25, 26].

Preparation of homogenized sample for acetyl coenzyme A carboxylase (ACC) and

glycogen synthase (GS) assay

Peripheral blood lymphocytes was homogenized in ice-cold buffer (20 mM Tris, 150
mM KH2PO4, 5 mM EDTA, 10 mM monothioglycerol, pH 7.8) and centrifuged at 12,000
g for 10 min at 4 °C. The supernatant was used for assaying ACC and GS activity at A340
nm in a spectrophotometer (Hitachi U2910, Japan).

ACC and GS assay

Assay mixture for ACC contained 50 mM Tris, 10 mM potassium citrate, 10 mM
MgCl,,1mg/ml BSA, 3.75 mM ATP, 0.125 mM acetyl CoA, 25 mM KHCO3, 0.5 mM
PEP, 0.125 mM NADH, 5.6 U pyruvate kinase, 5.6 U lactate dehydrogenase and 10 uL
homogenate [27]. GS reaction mixture consisted of 50 mM Tris, 12.5 mM MgClz, 1 mM
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EDTA, 0.75 mM UDP-glucose, 1 % glycogen, 0.7 mM PEP, 7.5 U pyruvate kinase, 15
U lactate dehydrogenase, 7.1 mM NADH and 10 pl sample [28].

All enzyme activities are represented as U/mg protein where 1 catalyzes the conversion
of 1 umol substrate into the product at a given assay condition. Protein concentration was
estimated using Bradford’s method [29].

CD4*/CD8*measurement for in-vitro and in-vivo models

Flow cytometry for phenotype analysis was done in FACS Calibur (BD Bioscience,
USA) where 1x10° PBL was counted using trypan blue in a hemocytometer and were
stained with fluorescent-conjugated antibodies (CD4-FITC and CD8-PE). Ten thousand
events were collected in a forward/side scatter and the result was analyzed using
CellQuest Pro (BD Bioscience). The lymphocyte subsets data are presented as a ratio of
CD4*/CD8"cell percentages.

Cytokine profile for in-vitro and in-vivo models

The cytokine profile for the in-vivo model was carried out using mouse serum. For the
in vitro model, released cytokines were measured by taking 100 ul of culture media at the
end of the 72h culture period. Tumor necrosis factor-o. (TNF-a) and interleukin-6 (IL-6)
levels were estimated using the TNF-a mouse ELISA kit (Invitrogen, cat no. KMC3011)
and the IL-6 mouse ELISA kit (Cayman Chemical, cat no. 583371) respectively
according to the manufacturer’s instruction at A450nm. The result was expressed as
pg/ml.

Western blot for in-vitro and in-vivo models

Cells were lysed with buffer containing 10mM HEPES, 5 mM NaCl, 1mM
dithiothreitol, protease inhibitor, pH 7.5, and centrifuged at 12000 g for 5 min at 4°C.
Protein content was determined using Bradford’s method. Western blotting was
performed using a primary antibody against pAKT (S473) (1:1000, CST, USA) and p-
GSK3p (S21/9) (1:1000, CST) followed by incubation with secondary antibody
conjugated to HRP (1:40000, CST). Target proteins were quantified relative to -actin
(1:1000, Abcam) as the internal control protein. Protein bands were visualized by
enhanced chemiluminescence (BioRad, USA) and band intensity was calculated using
the BioRad Image Lab 5.0 software.

For studying pVDAC expression level, the mitochondrial fraction was
immunoprecipitated with VDAC (1:1000, Abcam, cat no. ab14734) antibody and protein
A/G agarose beads overnight at 4°C which was later probed with p-(S/T) Phe antibody
(1:1000, CST, cat no. 9631S) in a western blot experiment. The p-(S/T) Phe antibody
detects the phosphorylated serine or threonine on the immunoprecipitated protein while
remaining non-reactive with the non-phosphorylated form.

Statistical analysis

Results were expressed as mean+SEM analyzed using Student t-test on GraphPad
Prism 7 with *p<0.05, **p<0.01, and ***p<0.001 values considered as statistically
significant concerning their respective controls.
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RESULTS AND DISCUSSION
IPGTT, IPITT, and measurement of insulin level for diabetic mice

Area under the curve values serve as a good indicator of the host tolerance to glucose
and sensitivity towards insulin performed as IPGTT and IPITT respectively [21]. The
total AUC taken from 0 to 120 min for both IPGTT (Fig.1A) and IPITT (Fig. 1B) showed
higher blood glucose for diabetic mice when compared to the control. Further, diabetic
mice also showed decreased serum insulin levels (p<0.01) (Fig. 2C). These results are
characteristics associated with diabetes as observed in other studies [30, 31].
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Fig 1. Effect of alloxan-diabetes on (A) intraperitoneal glucose tolerance test (IPGTT);
(B) intraperitoneal insulin tolerance test (IPITT); (C) blood glucose level (n=6) and (D)
serum insulin of mice (n=3). Data presented as mean + SEM, p<*0.05, **<0.01,
***<(0.001 versus respective control.

Lipid accumulation, intracellular triglycerides in PBL of in-vitro and in-vivo models

Peripheral blood lymphocytes contained lipid droplets that are positive for Oil Red O,
an oil-soluble colorant as opposed to control cells that instead take up the hematoxylin, a
basic dye causing the PBL to stain blue. These lipid droplets are cytoplasmic and
membrane-associated in location [23] as represented by a black arrow in Fig. 2A. Out of
100 cells that were counted, the number of positively stained cells was more (p<0.001) in
GIc/PA treated cells than in control (Fig. 2B). The isolated diabetic PBL also showed
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accumulated lipid droplets when stained with Oil Red O (p<0.001) (Fig. 2B). Lipid
deposition was further quantified by measuring the intracellular triglyceride (TG) level.
As observed in Fig. 2C, TG levels increased significantly (p<0.01) when compared to the
respective control.
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Fig 2. Lipid accumulation in PBL from in-vitro and in-vivo groups: (A) Oil Red O dye
accumulation in PBL observed morphologically under the microscope (100X). The
black arrow indicates lipid droplets. (B) Oil Red O positive cells (n=6). (C)
Intracellular triglyceride content (n=3). Data presented as mean + SEM, p<*0.05,
**<(.01, ***<0.001 versus respective controls.

Enzymes activities in PBL of in-vitro and in-vivo models

Fig. 3A showed an increased ACC enzyme activity (p<0.001) for Glc/PA-exposed
PBL and PBL of diabetic mice as compared to control. CPT activity was found to
decrease in Glc-/PA-treated PBL (p<0.01; p<0.001) and in PBL isolated from diabetic
mice (p<0.001) as compared to their respective control (Fig. 3B). The changes in these
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enzyme activities suggest that high GIc/PA can inhibit fatty acid oxidation while
promoting de novo synthesis [32]. No significant difference in GS activity was observed
in the cultured and diabetic PBL when compared with their respective controls (Fig. 3C).
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Fig 3. Enzyme activities of PBL from in-vitro and in-vivo groups: (A) Acetyl coenzyme
A carboxylase (ACC); (B) Carnitine palmitoyltransferase (CPT); (C) Glycogen
synthase (GS). Data presented as mean = SEM (n=6), NS, not significant versus

respective controls.

Lymphocyte subsets and cytokine production for in-vitro and in-vivo models

A fluctuation in FFA or glucose levels has been reported to affect lymphocyte
proliferation and balance [33]. Lipid abnormalities and hyperglycemia are associated with
elevated pro-inflammatory cytokines viz., IL-6, and TNF-a concentration [34, 35]. In our
study, CD4*/CD8" ratio decreases under high Glc (p<0.05), high PA (0.001) and in
diabetic (p<0.01) groups respective to the controls (Fig. 4A). Furthermore, all the
treatment conditions elevated the TNF-a (p<0.05) (Fig. 4B) and IL-6 levels for Glc/PA
(p<0.05) including the diabetic group (p<0.01) compared to their respective controls (Fig.
4C).
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Fig 4. Effect of in-vitro/ in-vivo diabetic condition on lymphocyte subset and cytokines
production: (A) CD4*/CD8*cell ratio; (B) Tumor necrosis factor-a (TNF-a); (C)
Interleukin-6 (IL-6). Data presented as mean = SEM (n=3), p<*0.05, **<0.01,
***<(0.001 versus respective controls.

Protein expression in PBL of in-vitro and in-vivo models

To understand the mechanism behind the effect of high Glc/PA on PBL function,
expression of AKT, and its downstream effectors, GSK3[ was investigated. In the current
study, PBL of in-vitro and in-vivo models showed decreased pAKT (p<0.05) and
decreased phosphorylated GSK3p protein expression when compared to their respective
control (Fig.5A-B). GSK3p is known to be responsible for phosphorylation of VDAC, an
outer mitochondrial protein involved in metabolites flux and apoptosis [36]. Our result
showed an increase in phosphorylated VDAC protein expression (p<0.01) in PBL treated
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with Glc and from diabetic mice while no change was observed under the PA treated
group (Fig.5C).
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Fig 5. Effect of in-vitro/ in-vivo diabetic condition on phosphorylated protein
expression: (A) AKT; (B) Glycogen synthase kinase-38 (GSK-3p); (C) Voltage-
dependent anion channel (VDAC). Data presented as mean = SEM (n=3), p<*0.05,
**<0.01, ***<0.001, NS, not significant versus respective controls where, Glc: 40 mM
Glucose/ PA: 150 uM palmitic acid; DM: diabetic.

This study demonstrates the effect of in-vitro and in-vivo diabetes on the function of
PBL mediated via AKT and its downstream targets. PBL of the in-vitro model was
incubated in culture media with high Glc/ PA which represents conditions of
hyperglycemia and hyperlipidemia observed in diabetes. Recreation of diabetes
environment in-vitro is crucial for studying the effect of diabetes as these models are
governed not only by the cells themselves but also by the conditions they are exposed to
[37]. As seen in other studies, incubation of PBL under high glucose/ palmitic acid
concentration mimics the in-vitro milieu of diabetes [5, 16, 38]. For the in-vivo model,
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PBL were isolated from a diabetic group which showed characteristically high blood
glucose level, glucose intolerance, and insulin insensitivity.

Peripheral blood lymphocytes from both the in-vitro and in-vivo groups showed
increased lipid deposition and intracellular TG levels. ACC, a lipogenic enzyme was
higher in PBL of both the studied models as supported by other studies under high glucose
[39], high PA [40] and diabetes [41]. Further, this increased in ACC activity may have
acted as an inhibitor of CPT thereby decreasing its activity in PBL as reported elsewhere
[42, 43]. Therefore, impaired metabolism indicated by reduced CPT enzyme associated
with B-oxidation and lipogenic ACC upregulation may have contributed to the increased
lipid deposition [44, 40, 45]. ACC and CPT play key roles in fatty acid metabolism and
as previously reported evidence indicate that changes in basic cellular lipid metabolism
have critical effects on T cell proliferation and cell fate decisions [46]. In the study
performed by Bhutada et al. [47], glycogen synthesis has been shown to compete with
triglyceride synthesis despite that these pathways are distant in the cellular metabolic
network. Therefore, we investigated the effect of the treatment conditions on the GS
activity of PBL. The low or no glycogen store in lymphocytes [48, 49] might have
contributed to GS activity remaining unchanged in all the treatment groups as compared
to their respective control observed in our study.

AKT activation through its phosphorylation enables it to mediate downstream
responses by further phosphorylating a range of intracellular proteins [50]. The protein
expression level of phosphorylated AKT was markedly reduced in PBL under Glc/ PA
and isolated from diabetic mice. Studies such as in high glucose-induced endothelial cells
[51], PA-induced C2C12 myotubes [52], and in diabetes [12, 13] have demonstrated
reduced pAKT expression. Consequently, GSK3f phosphorylation would be expected to
decrease. GSK3[ phosphorylation at Ser9 or Ser389 leads to its inactivation. pGSK3f3
may have contributed to TG and lipid accumulation by regulating ACC and other
lipogenic enzyme gene expression as seen in the muscle cells [53] and the diabetic cardiac
tissue [54].

AKT/ GSK3B closely relates to the abnormal activation and proliferation of
lymphocytes in other disease conditions including diabetes [55]. In our study, the helper/
cytotoxic lymphocyte ratio [56] and inflammatory profile [57] parameters for assessing
immune function were monitored. The phosphorylated state of AKT/ GSK3 in our study
may have contributed to the changes in the lymphocyte function. Our data revealed a
decreased CD4*/ CD8" ratio as suggested in previous studies [57, 58, 59]. This may be
due to the reduction of lymphocyte migration/ maturation at the secondary lymphoid
organs or a failed T cell growth accompanied by decreased pAKT and pGSK3p [7, 60].
Our study also reported a shift towards a pro-inflammatory profile indicated by an
increase in TNF-o and IL-6 levels in all treatment conditions. Elevated TNF-o and IL-6
levels have been reported in alloxan-induced diabetes [57] including in other cells lines
exposed to palmitic acid [61, 62] and high glucose [63, 64]. Reduced pAKT and pGSK3f3
accompanied these changes in the inflammatory profile [65, 66]. AKT/ GSK3p
phosphorylation state may therefore, influence lymphocyte function.

GSK3p has been reported to phosphorylate many proteins including VDAC, an outer
mitochondrial protein. VDAC regulates cell metabolism by mediating the cytosol-
mitochondria metabolite flux and by interacting with other proteins at the mitochondrial
membrane [36]. One of them is the CPT protein responsible for uptake and oxidation of
chain fatty acid through the ACSL1-CPT1a-VDAC complex [67, 68]. However, the
impact of VDAC phosphorylation or dephosphorylation on immune function has not
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clearly elucidated. In our study, Glc and diabetes increase VDAC phosphorylation while
in PA-induced PBL, the VDAC phosphorylation state remains close to normal.

CONCLUSION

In our study in-vitro and in-vivo diabetes inhibited Akt/GSK3[ phosphorylation and
caused dysregulation in the PBL function. We found contrasting results for downstream
targets of GSK3p in PBL exposed to high Glc and high PA. Further characterization of
phosphorylation sites would be needed to connect the downstream targets of GSK3 with
immune dysfunction under diabetic condition. In conclusion, our data suggest that
aberrant states of AKT phosphorylation may have the potential to alter lymphocyte
function in diabetes.
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