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ABSTRACT. In this study, we investigated the effect of in-vitro and in-vivo models of diabetes on AKT 

phosphorylation and its downstream targets. For the in-vitro model, peripheral blood lymphocytes (PBL) 

were incubated with high glucose (Glc) or palmitic acid (PA) concentrations while for the in-vivo model, 

PBL was isolated from alloxan-induced diabetic mice. PBL was then examined for triglyceride content, 

lipid accumulation, enzyme activities, and phosphorylation state of AKT, glycogen synthase kinase-3β 

(GSK3β) and voltage-gated anion channel (VDAC). CD4/CD8 ratio and pro-inflammatory profile were 

monitored as indicators of lymphocyte function. Glc-/PA-exposed PBL demonstrated increased triglyceride 

content and lipid droplets. This was accompanied by increased acetyl CoA carboxylase and decreased 

carnitine palmitoyltransferase activity while glycogen synthase activity was unchanged. Glc- and PA-

exposed PBL showed decreased pAKT-, pGSK3β-protein expression. Interestingly, relative to pVDAC 

expression, Glc- and PA-exposed PBL showed contrasting results. An altered CD4/CD8 ratio with elevated 

pro-inflammatory profile was noted indicating impaired lymphocyte function. Results of the in-vivo model 

were consistent with those of cultured PBL except the data of pVDAC expression showed resemblance to 

those of Glc-incubated PBL. These results demonstrate that diabetic conditions can reduce the expression 

of AKT and its downstream targets, GSK3β which might contribute to impaired lymphocyte function. 

Contrasting results on pVDAC expression under high Glc and PA suggests the possible involvement of 

other candidate substrates downstream to GSK3β. 

 

Keywords: Diabetes, glucose, palmitic acid, GSK3β, VDAC 

INTRODUCTION 

Nutrients such as glucose and fatty acid play crucial roles in immune signaling and 

immune cell functions [1].  Imbalance in these nutrients can disrupt the fate of immune 

cells as noticed in a range of diseases. Diabetes is a disease with elevated circulating 

glucose and free fatty acids known to harm immune cells [2, 3] including lymphocytes 

[4, 5]. Impaired lymphocyte function has been linked to changes in lymphocyte 

metabolism in a study on alloxan-induced diabetes [4]. 

Lymphocytes homeostasis requires the coordination of various signaling pathways 

involved in metabolic processes. AKT signaling pathway is fundamentally important as 

it controls nutrient uptake and cellular metabolism. AKT is a serine/threonine kinase that 

functions mostly by phosphorylating downstream targets such as other protein kinases, 

apoptotic proteins, and transcription factors [6, 7]. Additionally, it regulates glycogen 

synthase kinase3β (GSK3β) protein which in turn phosphorylate other proteins such as 

voltage-dependent anion channel (VDAC). VDAC is present at the outer mitochondrial 
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membrane and has a task of transporting metabolites to enable the mitochondria to 

maintain membrane potential. Adverse changes in mitochondrial membrane potential are 

disadvantageous to cell metabolism and can even lead to death [8]. Besides, GSK3β has 

been identified as a key mediator of pro-inflammatory cytokine production [9, 10]. 

Disruption of AKT pathways has been linked to cellular dysfunction and numerous 

diabetic complications [11, 12, 13]. Although in diabetes, glucose and palmitic acid levels 

are high, their levels might be variable due to various physiological and endocrine factors. 

Therefore, we designed in-vitro experiments to determine lymphocyte dysfunction 

induced by glucose (Glc) or palmitic acid (PA) overload in peripheral blood lymphocytes 

(PBL) isolated from mice. In the present study, we investigated the effect of in-vitro and 

in-vivo diabetes on AKT phosphorylation and its downstream targets in peripheral blood 

lymphocytes isolated from mice. 

MATERIALS AND METHODS 

Reagents 

Alloxan monohydrate, histopaque-1077, palmitic acid, bovine serum albumin, and 

protease inhibitor cocktail were purchased from Sigma, USA. RPMI-1640, fetal bovine 

serum, phytohemagglutinin were purchased from Gibco, USA. Protein A/G-Sepharose 

was from Abcam, USA, nitrocellulose membrane (0.2 um), chemiluminescence substrate 

was from Bio-Rad, USA. Glucose was from Himedia, India while other chemicals and 

reagents of analytical grade were from Himedia, India, and Sisco Research Laboratories, 

India. 

 

Animal 

Male Swiss albino mice (25-30 g) were procured from Pasteur Institute, Shillong, and 

acclimatized for 7 days before experimentation. The mice were housed under standard 

conditions of 22°C, 12:12 h dark and light cycle, fed water, and standard pelleted diet ad 

libitum. Institutional Ethical Clearance (dated 15th December, 2015) was obtained for 

conducting the experiments on the mice model.  

 

Peripheral blood lymphocytes isolation 

Mice blood was collected retro-orbitally into heparin tubes, diluted with phosphate 

buffer saline (PBS, pH 7.2), and then loaded to histopaque-1077 following which the 

tubes were centrifuged at 800rpm for 15min. The peripheral blood lymphocytes (PBL) 

cell layer was then collected and washed twice in PBS [14].  

 

In-vitro experimental design  

Isolated PBL (1 x 106 cells) are cultured in RPMI-1640 medium containing glucose 

(Gibco, cat no. 11875093) at 37°C in a 5% CO2 incubator. The medium was supplemented 

with 10% fetal bovine serum, 100 U/ml streptomycin, 200 U/ml penicillin, 

phytohemagglutinin, and either with 40 mM (Glc) [15] or 150 µM (PA) [16] for 72 h to 

mimic conditions of hyperglycemia/ hyperlipidemia respectively. 
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Preparation of palmitic acid 

Palmitic acid was prepared as a stock solution of 100 mM dissolved in 100 % ethanol 

at 70°C. This solution was complexed with Bovine serum albumin (BSA) by shaking for 

1 h at 50°C [17]. The fatty acid to BSA molar ratio was at 3:1 [18]. To normalize the 

effect of the solvents used to dissolve PA, control groups received the same volume of 

ethanol-BSA in the absence of PA.  

 

Media D-glucose concentration for in-vitro model 

The medium glucose concentration for the in-vitro model was determined by the 

coupled enzyme activities of horseradish peroxidase and glucose oxidase [19]. 10 μl of 

the medium was analyzed in a 1ml total reaction volume containing 1.75 mM each of 4-

aminoantipyrine and N-ethyl-N-sulfopropyl-m-toluidine as the chromophore solution, 

120 mM sodium phosphate, pH 6.0, 2.7 U/ml HRP. The reaction was started by the 

addition of 1.6 U/ml glucose oxidase. The solution was left to stand for 45-60 min at 25 

°C before taking the absorbance reading at λ550 nm. The concentration was calculated 

from the standard curve made using D-glucose at varying concentrations. 

 

In-vivo experimental design 

Peripheral blood lymphocytes isolated from alloxan-induced diabetic mice was used 

as the in-vivo model. Diabetes (blood glucose level <200 mg/dl) was induced by injecting 

alloxan monohydrate (Sigma, USA, cat no. A7413-25G) intravenously at a dose of 60 

mg/kg b.w. [20] dissolved in sodium acetate buffer (0.15 M, pH 4.5) [21]. An equal 

volume of the buffer was injected into normal control mice. On the 7th day, blood was 

collected for isolation of PBL [4]. 

 

Intraperitoneal Glucose tolerance test (IPGTT), intraperitoneal insulin tolerance test 

(IPITT), and measurement of insulin level for diabetic mice 

Mice were fasted for 16 h before conducting these two experiments. To conduct 

IPGTT, mice were administered with glucose (2 mg/kg b.w.) intraperitoneally (i.p.). 

Following injection, blood glucose level was estimated at 0, 30, 60, and 120 min by using 

a standard glucometer. For IPITT, insulin (0.75 U/kg b.w) was administered via the i.p. 

route followed by blood glucose level measurement at 0, 30, 60, 120 min. The total area 

under the curve (AUC) which is the average of the total of blood glucose in two different 

time intervals was calculated for blood glucose level representation [22]. Insulin was 

quantified in mU/L using experimental kits according to the manufacturer’s instructions 

(Fine Test, China, cat no. EM0260). 

 

Lipid accumulation determined using Oil red O stain and by measuring intracellular 

triglyceride (TG) level for in-vitro and in-vivo models 

Lipid accumulation 

Isolated PBL were washed in PBS, fixed in 4% paraformaldehyde for 10 min at room 

temperature. The formaldehyde was discarded, cells washed, and incubated for another 1 

h. The fixative was then washed with distilled water followed by a 60 % isopropanol wash 

for 5 min at room temperature. The PBL was then smeared onto slides and air-dried at 

room temperature. Slides were then stained with Oil red O (0.5% w/v stock solution 

prepared in 95% isopropyl alcohol) for 15 min and counterstained with hematoxylin. The 
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excess stain from slides was removed using distilled water, then mounted on an aqueous 

mounting medium, and PBL with red positively stained lipid droplets (in %) are counted 

immediately [23]. 

 

Intracellular triglyceride 

Intracellular triglyceride (TG) level (in mmol/L) was quantified according to the 

manufacturer’s instruction using a triglyceride kit (Abcam, cat no. ab65336). Briefly, 

isolated PBL from in vitro and in vivo models were washed with PBS and homogenized 

in 1 ml of NP40. The samples were then heated to 80°C in a water bath until the NP40 

becomes cloudy. This was then cooled down to room temperature and centrifuged for 2 

min. 50 μL of sample and standard was then added to sample and standard wells 

respectively. 2 μL of lipase and assay buffer each was added to all the wells and incubated 

for 20 min at room temperature. Next 50 μL of TG mix (containing assay buffer, TG 

probe, and TG enzyme mix) was added to all the wells and mixed properly. After a 60 

min incubation in the dark, the output was measured in a microplate reader (Bio-Rad 680 

Plate reader) at λ570 nm. 

 

Enzymes activities determination for in-vitro and in-vivo models 

Mitochondrial fraction preparation for Carnitine palmitoyltransferase (CPT) assay 

Peripheral blood lymphocytes was incubated for 10 min in RSB-hypo buffer 

containing a 1% protease inhibitor cocktail and swollen cells disrupted using Dounce 

homogenizer [24]. 1.5 mL of the homogenized mixture was immediately mixed with 2.5X 

mitochondrial isolation buffer (525 mM mannitol, 175 mM sucrose, 12.5 mM tris, 2.5 

mM EDTA, pH 7.5) followed by centrifugation at 1300 g for 10 min at 4°C. The 

supernatant was then centrifuged at 17000 g for 15 min. The resulting mitochondrial 

pellet was resuspended in buffer (70 mM sucrose, 220 mM mannitol, 2 mM HEPES, 1 

mM EDTA, pH7.4). 

 

CPT assay 

Assay (A) contains 116 mM Tris, pH 8, 1.1 mM EDTA, 0.035 mM palmitoyl CoA, 

0.12 mM DTNB, 0.1% TritonX-100, 1.1 mM l(˗)-carnitine and 100 μl of the sample. 

Assay (B) contains the reaction mix without l(˗)-carnitine. The assay which started with 

the addition of the sample follows the release of free CoA from palmitoyl CoA using the 

reagent 5, 5’-dithiobis(2-nitobenzoate) (DTNB) at λ412 nm. The difference in reaction 

rates for assay A and B equates to CPT activity [25, 26]. 

 

Preparation of homogenized sample for acetyl coenzyme A carboxylase (ACC) and 

glycogen synthase (GS) assay 

Peripheral blood lymphocytes was homogenized in ice-cold buffer (20 mM Tris, 150 

mM KH2PO4, 5 mM EDTA, 10 mM monothioglycerol, pH 7.8) and centrifuged at 12,000 

g for 10 min at 4 °C. The supernatant was used for assaying ACC and GS activity at λ340 

nm in a spectrophotometer (Hitachi U2910, Japan).  

 

ACC and GS assay 

Assay mixture for ACC contained 50 mM Tris, 10 mM potassium citrate, 10 mM 

MgCl2,1mg/ml BSA, 3.75 mM ATP, 0.125 mM acetyl CoA, 25 mM KHCO3, 0.5 mM 

PEP, 0.125 mM NADH, 5.6 U pyruvate kinase, 5.6 U lactate dehydrogenase and 10 μL 

homogenate [27]. GS reaction mixture consisted of 50 mM Tris, 12.5 mM MgCl2, 1 mM 
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EDTA, 0.75 mM UDP-glucose, 1 % glycogen, 0.7 mM PEP, 7.5 U pyruvate kinase, 15 

U lactate dehydrogenase, 7.1 mM NADH and 10 μl sample [28].  

All enzyme activities are represented as U/mg protein where 1 catalyzes the conversion 

of 1 μmol substrate into the product at a given assay condition. Protein concentration was 

estimated using Bradford’s method [29]. 

 

CD4+/CD8+measurement for in-vitro and in-vivo models 

Flow cytometry for phenotype analysis was done in FACS Calibur (BD Bioscience, 

USA) where 1x106 PBL was counted using trypan blue in a hemocytometer and were 

stained with fluorescent-conjugated antibodies (CD4-FITC and CD8-PE). Ten thousand 

events were collected in a forward/side scatter and the result was analyzed using 

CellQuest Pro (BD Bioscience). The lymphocyte subsets data are presented as a ratio of 

CD4+/CD8+cell percentages. 

 

Cytokine profile for in-vitro and in-vivo models 

The cytokine profile for the in-vivo model was carried out using mouse serum. For the 

in vitro model, released cytokines were measured by taking 100 μl of culture media at the 

end of the 72h culture period. Tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) 

levels were estimated using the TNF-α mouse ELISA kit (Invitrogen, cat no. KMC3011) 

and the IL-6 mouse ELISA kit (Cayman Chemical, cat no. 583371) respectively 

according to the manufacturer’s instruction at λ450nm. The result was expressed as 

pg/ml. 

 

Western blot for in-vitro and in-vivo models 

Cells were lysed with buffer containing 10mM HEPES, 5 mM NaCl, 1mM 

dithiothreitol, protease inhibitor, pH 7.5, and centrifuged at 12000 g for 5 min at 4°C. 

Protein content was determined using Bradford’s method. Western blotting was 

performed using a primary antibody against pAKT (S473) (1:1000, CST, USA) and p-

GSK3β (S21/9) (1:1000, CST) followed by incubation with secondary antibody 

conjugated to HRP (1:40000, CST).  Target proteins were quantified relative to β-actin 

(1:1000, Abcam) as the internal control protein. Protein bands were visualized by 

enhanced chemiluminescence (BioRad, USA) and band intensity was calculated using 

the BioRad Image Lab 5.0 software. 

For studying pVDAC expression level, the mitochondrial fraction was 

immunoprecipitated with VDAC (1:1000, Abcam, cat no. ab14734) antibody and protein 

A/G agarose beads overnight at 4ºC which was later probed with p-(S/T) Phe antibody 

(1:1000, CST, cat no. 9631S) in a western blot experiment. The p-(S/T) Phe antibody 

detects the phosphorylated serine or threonine on the immunoprecipitated protein while 

remaining non-reactive with the non-phosphorylated form. 

 

Statistical analysis  

Results were expressed as mean±SEM analyzed using Student t-test on GraphPad 

Prism 7 with *p<0.05, **p<0.01, and ***p<0.001 values considered as statistically 

significant concerning their respective controls. 
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RESULTS AND DISCUSSION 

IPGTT, IPITT, and measurement of insulin level for diabetic mice 

Area under the curve values serve as a good indicator of the host tolerance to glucose 

and sensitivity towards insulin performed as IPGTT and IPITT respectively [21]. The 

total AUC taken from 0 to 120 min for both IPGTT (Fig.1A) and IPITT (Fig. 1B) showed 

higher blood glucose for diabetic mice when compared to the control. Further, diabetic 

mice also showed decreased serum insulin levels (p<0.01) (Fig. 2C). These results are 

characteristics associated with diabetes as observed in other studies [30, 31]. 

 

 

Fig 1. Effect of alloxan-diabetes on (A) intraperitoneal glucose tolerance test (IPGTT); 

(B) intraperitoneal insulin tolerance test (IPITT); (C) blood glucose level (n=6) and (D) 

serum insulin of mice (n=3). Data presented as mean ± SEM, p<*0.05, **<0.01, 

***<0.001 versus respective control. 

 

 

Lipid accumulation, intracellular triglycerides in PBL of in-vitro and in-vivo models  

Peripheral blood lymphocytes contained lipid droplets that are positive for Oil Red O, 

an oil-soluble colorant as opposed to control cells that instead take up the hematoxylin, a 

basic dye causing the PBL to stain blue. These lipid droplets are cytoplasmic and 

membrane-associated in location [23] as represented by a black arrow in Fig. 2A. Out of 

100 cells that were counted, the number of positively stained cells was more (p<0.001) in 

Glc/PA treated cells than in control (Fig. 2B). The isolated diabetic PBL also showed 
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accumulated lipid droplets when stained with Oil Red O (p<0.001) (Fig. 2B). Lipid 

deposition was further quantified by measuring the intracellular triglyceride (TG) level. 

As observed in Fig. 2C, TG levels increased significantly (p<0.01) when compared to the 

respective control. 

 

 

Fig 2. Lipid accumulation in PBL from in-vitro and in-vivo groups: (A) Oil Red O dye 

accumulation in PBL observed morphologically under the microscope (100X). The 

black arrow indicates lipid droplets. (B) Oil Red O positive cells (n=6). (C) 

Intracellular triglyceride content (n=3). Data presented as mean ± SEM, p<*0.05, 

**<0.01, ***<0.001 versus respective controls. 

 

Enzymes activities in PBL of in-vitro and in-vivo models 

Fig. 3A showed an increased ACC enzyme activity (p<0.001) for Glc/PA-exposed 

PBL and PBL of diabetic mice as compared to control. CPT activity was found to 

decrease in Glc-/PA-treated PBL (p<0.01; p<0.001) and in PBL isolated from diabetic 

mice (p<0.001) as compared to their respective control (Fig. 3B). The changes in these 
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enzyme activities suggest that high Glc/PA can inhibit fatty acid oxidation while 

promoting de novo synthesis [32]. No significant difference in GS activity was observed 

in the cultured and diabetic PBL when compared with their respective controls (Fig. 3C). 

 

Fig 3. Enzyme activities of PBL from in-vitro and in-vivo groups: (A) Acetyl coenzyme 

A carboxylase (ACC); (B) Carnitine palmitoyltransferase (CPT); (C) Glycogen 

synthase (GS). Data presented as mean ± SEM (n=6), NS, not significant versus 

respective controls. 

 

Lymphocyte subsets and cytokine production for in-vitro and in-vivo models 

A fluctuation in FFA or glucose levels has been reported to affect lymphocyte 

proliferation and balance [33]. Lipid abnormalities and hyperglycemia are associated with 

elevated pro-inflammatory cytokines viz., IL-6, and TNF-α concentration [34, 35]. In our 

study, CD4+/CD8+ ratio decreases under high Glc (p<0.05), high PA (0.001) and in 

diabetic (p<0.01) groups respective to the controls (Fig. 4A). Furthermore, all the 

treatment conditions elevated the TNF-α (p<0.05) (Fig. 4B) and IL-6 levels for Glc/PA 

(p<0.05) including the diabetic group (p<0.01) compared to their respective controls (Fig. 

4C). 
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Fig 4. Effect of in-vitro/ in-vivo diabetic condition on lymphocyte subset and cytokines 

production: (A) CD4+/CD8+cell ratio; (B) Tumor necrosis factor-α (TNF-α); (C) 

Interleukin-6 (IL-6). Data presented as mean ± SEM (n=3), p<*0.05, **<0.01, 

***<0.001 versus respective controls. 

 

Protein expression in PBL of in-vitro and in-vivo models 

To understand the mechanism behind the effect of high Glc/PA on PBL function, 

expression of AKT, and its downstream effectors, GSK3β was investigated. In the current 

study, PBL of in-vitro and in-vivo models showed decreased pAKT (p<0.05) and 

decreased phosphorylated GSK3β protein expression when compared to their respective 

control (Fig.5A-B). GSK3β is known to be responsible for phosphorylation of VDAC, an 

outer mitochondrial protein involved in metabolites flux and apoptosis [36]. Our result 

showed an increase in phosphorylated VDAC protein expression (p<0.01) in PBL treated 
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with Glc and from diabetic mice while no change was observed under the PA treated 

group (Fig.5C). 

 

Fig 5. Effect of in-vitro/ in-vivo diabetic condition on phosphorylated protein 

expression: (A) AKT; (B) Glycogen synthase kinase-3β (GSK-3β); (C) Voltage-

dependent anion channel (VDAC). Data presented as mean ± SEM (n=3), p<*0.05, 

**<0.01, ***<0.001, NS, not significant versus respective controls where, Glc: 40 mM 

Glucose/ PA: 150 μM palmitic acid; DM: diabetic. 

 

This study demonstrates the effect of in-vitro and in-vivo diabetes on the function of 

PBL mediated via AKT and its downstream targets. PBL of the in-vitro model was 

incubated in culture media with high Glc/ PA which represents conditions of 

hyperglycemia and hyperlipidemia observed in diabetes. Recreation of diabetes 

environment in-vitro is crucial for studying the effect of diabetes as these models are 

governed not only by the cells themselves but also by the conditions they are exposed to 

[37]. As seen in other studies, incubation of PBL under high glucose/ palmitic acid 

concentration mimics the in-vitro milieu of diabetes [5, 16, 38]. For the in-vivo model, 
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PBL were isolated from a diabetic group which showed characteristically high blood 

glucose level, glucose intolerance, and insulin insensitivity.  

Peripheral blood lymphocytes from both the in-vitro and in-vivo groups showed 

increased lipid deposition and intracellular TG levels. ACC, a lipogenic enzyme was 

higher in PBL of both the studied models as supported by other studies under high glucose 

[39], high PA [40] and diabetes [41]. Further, this increased in ACC activity may have 

acted as an inhibitor of CPT thereby decreasing its activity in PBL as reported elsewhere 

[42, 43]. Therefore, impaired metabolism indicated by reduced CPT enzyme associated 

with β-oxidation and lipogenic ACC upregulation may have contributed to the increased 

lipid deposition [44, 40, 45]. ACC and CPT play key roles in fatty acid metabolism and 

as previously reported evidence indicate that changes in basic cellular lipid metabolism 

have critical effects on T cell proliferation and cell fate decisions [46]. In the study 

performed by Bhutada et al. [47], glycogen synthesis has been shown to compete with 

triglyceride synthesis despite that these pathways are distant in the cellular metabolic 

network. Therefore, we investigated the effect of the treatment conditions on the GS 

activity of PBL. The low or no glycogen store in lymphocytes [48, 49] might have 

contributed to GS activity remaining unchanged in all the treatment groups as compared 

to their respective control observed in our study.  

AKT activation through its phosphorylation enables it to mediate downstream 

responses by further phosphorylating a range of intracellular proteins [50]. The protein 

expression level of phosphorylated AKT was markedly reduced in PBL under Glc/ PA 

and isolated from diabetic mice. Studies such as in high glucose-induced endothelial cells 

[51], PA-induced C2C12 myotubes [52], and in diabetes [12, 13] have demonstrated 

reduced pAKT expression. Consequently, GSK3β phosphorylation would be expected to 

decrease. GSK3β phosphorylation at Ser9 or Ser389 leads to its inactivation. pGSK3β 

may have contributed to TG and lipid accumulation by regulating ACC and other 

lipogenic enzyme gene expression as seen in the muscle cells [53] and the diabetic cardiac 

tissue [54]. 

AKT/ GSK3β closely relates to the abnormal activation and proliferation of 

lymphocytes in other disease conditions including diabetes [55]. In our study, the helper/ 

cytotoxic lymphocyte ratio [56] and inflammatory profile [57] parameters for assessing 

immune function were monitored. The phosphorylated state of AKT/ GSK3β in our study 

may have contributed to the changes in the lymphocyte function. Our data revealed a 

decreased CD4+/ CD8+ ratio as suggested in previous studies [57, 58, 59]. This may be 

due to the reduction of lymphocyte migration/ maturation at the secondary lymphoid 

organs or a failed T cell growth accompanied by decreased pAKT and pGSK3β [7, 60]. 

Our study also reported a shift towards a pro-inflammatory profile indicated by an 

increase in TNF-α and IL-6 levels in all treatment conditions. Elevated TNF-α and IL-6 

levels have been reported in alloxan-induced diabetes [57] including in other cells lines 

exposed to palmitic acid [61, 62] and high glucose [63, 64]. Reduced pAKT and pGSK3β 

accompanied these changes in the inflammatory profile [65, 66]. AKT/ GSK3β 

phosphorylation state may therefore, influence lymphocyte function. 

GSK3β has been reported to phosphorylate many proteins including VDAC, an outer 

mitochondrial protein. VDAC regulates cell metabolism by mediating the cytosol-

mitochondria metabolite flux and by interacting with other proteins at the mitochondrial 

membrane [36]. One of them is the CPT protein responsible for uptake and oxidation of 

chain fatty acid through the ACSL1-CPT1a-VDAC complex [67, 68]. However, the 

impact of VDAC phosphorylation or dephosphorylation on immune function has not 
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clearly elucidated. In our study, Glc and diabetes increase VDAC phosphorylation while 

in PA-induced PBL, the VDAC phosphorylation state remains close to normal. 

CONCLUSION 

In our study in-vitro and in-vivo diabetes inhibited Akt/GSK3β phosphorylation and 

caused dysregulation in the PBL function. We found contrasting results for downstream 

targets of GSK3β in PBL exposed to high Glc and high PA. Further characterization of 

phosphorylation sites would be needed to connect the downstream targets of GSK3β with 

immune dysfunction under diabetic condition. In conclusion, our data suggest that 

aberrant states of AKT phosphorylation may have the potential to alter lymphocyte 

function in diabetes. 
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