Abstract views: 187 / PDF downloads: 338



Hypothetical protein, , molecular docking, , ExbD/TolR protein,, DNA, , V. Harveyi


Because of our limited understanding of the mechanisms governing Vibrio species persistence and spread in the face of global warming, finding ways to control the increasing spread of pathogenic vibrios is challenging. To determine whether the persistence of Vibrio harveyi is associated with physiological and gene expression patterns, it is important to do research on several proteins in its genome which are classified as hypothetical proteins (HPs). As a result, the current work sought to elucidate the roles of a HP found in the genome of V.harveyi. To determine the structure, function and homologous model of this protein, quality bioinformatics methods were used to predict and confirm the function as well as secondary and tertiary structure. Additionally, the active site and interacting proteins were examined using CASTp and the STRING server. An important biological activity of the HP is that it contains single functional domains that may be act as DNA binding site. Further, protein-protein interactions within selected HP revealed several functional partners that are essential for bacterial survival with different functional activity. In addition, molecular docking and simulation results showed stable bonding between HP and ExbD/TolR family protein which might be of significant relevance to future bacterial genetics research.


Campbell, S., Harada, R.M., DeFelice, S.V., Bienfang, P.K., Li, Q.X. (2009): Bacterial production of tetrodotoxin in the pufferfish Arothron hispidus. Natural Product Research 23(17):1630-1640.

Ruwandeepika, H.A.D., Defoirdt, T., Bhowmick P.P., Shekar, M., Bossier, P., Karunasagar, I. (2010): Presence of typical and atypical virulence genes in vibrio isolates belonging to the Harveyi clade. Journal of Applied Microbiology 109(3):888-899.

Roux, F.L., Wegner, K.M., Baker-Austin, C., Vezzulli, L., Osorio, C.R., Amaro, C., Ritchie, J.M., Defoirdt, T., Destoumieux-Garzón, D., Blokesch, M. (2015): The emergence of Vibrio pathogens in Europe: ecology, evolution, and pathogenesis. Frontiers in Microbiology 6(830).

Baker-Austin, C., Oliver, J.D., Alam, M., Ali, A., Waldor, M.K., Qadri, F., Martinez-Urtaza, J. (2018): Vibrio spp. infections. Nature Reviews Disease Primers 4(1):1-19.

Martin, G., Rubin, N., Swanson, E. (2004): Vibrio parahaemolyticus and V. harveyi cause detachment of the epithelium from the midgut trunk of the penaeid shrimp Sicyonia ingentis. Diseases of aquatic organisms 60:21-29.

Lee, K.K., Liu, P-C., Chuang, W.H. (2002): Pathogenesis of Gastroenteritis Caused by Vibrio carchariae in Cultured Marine Fish. Marine biotechnology (New York, NY) 4:267-277.

Austin, B., Zhang, X.-H. (2006): Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates. Letters in Applied Microbiology 43(2):119-124.

Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.-C., Estreicher, A., Gasteiger, E., Martin, M.J., Michoud, K., O'Donovan, C., Phan, I. (2003): The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Research 31(1):365-370.

Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S., Madden, T.L. (2008): NCBI BLAST: a better web interface. Nucleic Acids Research 36(suppl_2): W5-W9.

Alzohairy, A. (2011): BioEdit: An important software for molecular biology. GERF Bulletin of Biosciences 2:60-61.

Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R.D., Bairoch, A. (2003): ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research 31(13):3784-3788.

Islam, S., Mou, M., Sanjida, S., Mahfuj, MsE. (2022): An In-silico Approach for Identifying Phytochemical Inhibitors Against Nervous Necrosis Virus (NNV) in Asian Sea Bass by Targeting Capsid Protein. Genetics of Aquatic Organisms 6:487.

Yu, C., Hwang, J. (2008): Prediction of Protein Subcellular Localizations. In: 2008 Eighth International Conference on Intelligent Systems Design and Applications: 26-28 Nov 2008. 165-170.

Yu, N.Y., Wagner, J.R., Laird, M.R., Melli, G., Rey, S., Lo, R., Dao, P., Sahinalp, S.C., Ester, M., Foster, L.J. (2010): PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26(13):1608-1615.

Bhasin, M., Garg, A., Raghava, G.P.S. (2005): PSLpred: prediction of subcellular localization of bacterial proteins. Bioinformatics 21(10):2522-2524.

Möller, S., Croning, M.D.R.., Apweiler, R. (2001): Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17(7):646-653.

Tusnády, G.E., Simon, I. (2001): The HMMTOP transmembrane topology prediction server. Bioinformatics 17(9):849-850.

Dobson, L., Reményi, I., Tusnády, G.E. (2015): CCTOP: a Consensus Constrained TOPology prediction web server. Nucleic Acids Research 43(W1): W408-W412.

Marchler-Bauer, A., Anderson, J.B., Cherukuri, P.F., DeWeese-Scott, C., Geer, L.Y., Gwadz, M., He S., Hurwitz, D.I., Jackson, J.D., Ke, Z. (2005): CDD: a Conserved Domain Database for protein classification. Nucleic Acids Research 33(suppl_1): D192-D196.

Kanehisa, M., Goto, S., Kawashima, S., Nakaya, A. (2002): The KEGG databases at GenomeNet. Nucleic Acids Research 30(1):42-46.

Finn, R.D. (2005): Pfam: the protein families database. In: Encyclopedia of Genetics, Genomics, Proteomics and Bioinformatics.

Wilson, D., Madera, M., Vogel, C., Chothia, C., Gough J. (2006): The SUPERFAMILY database in 2007: families and functions. Nucleic Acids Research 35(suppl_1):D308-D313.

Hunter, S., Apweiler, R., Attwood, T.K., Bairoch, A., Bateman, A., Binns, D., Bork, P., Das, U., Daugherty, L., Duquenne, L. (2008): InterPro: the integrative protein signature database. Nucleic Acids Research 37(suppl_1):D211-D215.

Shen, H.-B., Chou, K.-C. ( 2009): Predicting protein fold pattern with functional domain and sequential evolution information. Journal of Theoretical Biology 256(3):441-446.

McGuffin, L.J., Bryson, K., Jones, D.T. (2000): The PSIPRED protein structure prediction server. Bioinformatics 16(4):404-405.

Islam S., Mou, M., Sanjida, S., Mahfuj, MsE. (2022): Functional Annotation and Characterization of a Hypothetical Protein from Pseudoalteromonas spp. Identify Potential Biomarker: An In-silico Approach. Aquatic Food Studies 2:57.

Xu, J., McPartlon, M., Li, J. (2021): Improved protein structure prediction by deep learning irrespective of co-evolution information. Nat Mach Intell 3:601-609.

Islam, S., Sanjida, S., Mou, M., Mahfuj, MsE., Nasir, S. (2022): In-silico functional annotation of a hypothetical protein from Edwardsiella tarda revealed Proline metabolism and apoptosis in fish. International Journal of Life Sciences and Biotechnology 5:78-96.

Wiederstein, M., Sippl, M.J. (2007): ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic acids research 35(Web Server issue): W407-W410.

Anderson, R., Deng, Z., Campbell, R., Jiang, X. (2005): Main-chain conformational tendencies of amino acids. Proteins 60:679-689.

Colovos, C., Yeates, T.O. (1993): Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2(9):1511-1519.

Laskowski, R.A., MacArthur, M.W., Thornton, J.M. (2006): PROCHECK: validation of protein-structure coordinates. In: International Tables for Crystallography 684-687.

Lüthy, R., Bowie, J.U., Eisenberg, D. (1992): Assessment of protein models with three-dimensional profiles. Nature 356(6364):83-85.

Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., Tsafou, K.P. (2015): STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(Database issue): D447-452.

Islam, S., Mou, M., Sanjida, S., Mahfuj, MsE., Alam, M., Juthy, Y. (2022): An In-silico analysis of the molecular interactions between PmCBP-VP24 and PmCBP-VP28 protein complex to understand the initial initiating events of shrimp WSSV infection. International Journal of Life Sciences and Biotechnology

Grützner, A., Garcia-Manyes, S., Kötter, S., Badilla, C.L., Fernandez, J.M., Linke, W.A. (2009): Modulation of titin-based stiffness by disulfide bonding in the cardiac titin N2-B unique sequence. Biophysical journal 97(3):825-834.

Ferrè, F., Clote, P. (2005): DiANNA: a web server for disulfide connectivity prediction. Nucleic Acids Res 33(Web Server issue):W230-232.

Heo, L., Shin, W.H., Lee, M.S., Seok, C. (2014): GalaxySite: ligand-binding-site prediction by using molecular docking. Nucleic Acids Res 42(Web Server issue): W210-214.

Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., Liang, J. (2006): CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Research 34(suppl_2): W116-W118.

Kozakov, D., Hall, D.R., Xia, B., Porter, K.A., Padhorny, D., Yueh, C., Beglov, D., Vajda, S. (2017): The ClusPro web server for protein-protein docking. Nature protocols 12(2):255-278.

Laskowski, R.A., Jabłońska, J., Pravda, L., Vařeková, R.S., Thornton, J.M. (2018): PDBsum: Structural summaries of PDB entries. Protein Sci 27(1):129-134.

Weng, G., Wang, E., Wang, Z., Liu, H., Zhu, F., Li, D., Hou, T. (2019): HawkDock: a web server to predict and analyze the protein-protein complex based on computational docking and MM/GBSA. Nucleic Acids Res 47(W1): W322-w330.

Källberg, M., Margaryan, G., Wang, S., Ma, J., Xu, J. (2014): RaptorX server: a resource for template-based protein structure modeling. Methods Mol Biol 1137:17-27.

Tian, W., Chen, C., Lei, X., Zhao, J., Liang, J. (2018): CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Research 46(W1): W363-W367.




How to Cite