Abstract views: 77 / PDF downloads: 134


  • Ouahiba Benhamada
  • Nabila Benhamada
  • Essaid Leghouchi


Chlorophyll, fluoride, lead, MDA, proline, soluble sugars


One of the major problems of current time is air pollution, the assessment of air quality through the use of bioindicators is a major concern at the moment. Our work aims to study the response of Xanthoria parietina (L.) Th. Fr.  to fluoride- and lead-induced stress as an example of the phytotoxic air pollutants. For this purpose, lichen thalli have been treated with sodium fluoride (NaF) and lead nitrates (Pb(NO3)2) solutions at 0, 0.5, 1.0, 5.0 and 10 mM, for time scale of 0, 24, 48 and 96 h. Lipid peroxidation measured by Malondialdehyde (MDA) and chlorophyll degradation measured by optical density OD435/OD415 ratio are used as results of stress induced by fluoride and lead, and the accumulation of proline and soluble sugars are measured as indicators of responses used by X. parietina. Based on the obtained results, it was noted that lipid peroxidation increased correlating with increasing concentrations of NaF and Pb(NO3)2 (r=0.773, p=0.000712*** and r 0.865, p=0.000031***, respectively), however, chlorosis and proline increased correlating with increasing exposure time of NaF (r=- 0.737, p=0.0011** and r=0.783, p=0.00032***, respectively) and Pb(NO3)2 (r=-0.926, p<0.0001*** and r=0.811, p=0.00013***, respectively), whereas soluble sugar contents increased according to increasing concentrations of NaF (r=0.678, p=0.0010***) and according to increasing exposure time of Pb(NO3)2 (r=0.780, p=0.00036***). Although lead was significantly more toxic than fluoride (p=0.02*), X. parietina offers a very high sensitivity to fluoride, which allowed us to conclude that the toxicity of fluorine is comparable to that of lead.


Nash, III T. (2008): Lichen Biology (2nd Ed.). Cambridge: Cambridge, University Press. DOI:

Benítez, A., Medina, J., Vásquez, C., Loaiza, T., Luzuriaga, Y., Calva, J. (2019): Lichens and Bromeliads as Bioindicators of Heavy Metal Deposition in Ecuador. Lichen Diversity and Biomonitoring 11(2), 28. DOI:

Mohamed, E., Mohamed, L., Abdelhay, E.G. (2020): Using calcicolous and corticolous lichens to assess lead and cadmium air pollution of the Moroccan Atlantic Coast Safi-Essaouira. Polish Journal of Environmental Studies 29(1): 779-787. DOI:

Quijano-Abril, M.A., Ramirez-Ospina, D.M., Domínguez-Rave, M.I., Londoño-Valencia, J. (2021): Lichens as biosensors for the evaluation of urban and sub-urban air pollution in a tropical mountain valley, Rionegro, Antioquia. Revista Bionatura 6(1): 1501-1509. DOI.

Caggiano, R., Trippetta, S., Sabia, S. (2015): Assessment of atmospheric trace element concentrations by lichen-bag near an oil/gas pre-treatment plant in the Agri Valley (southern Italy). Natural Hazards and Earth System Sciences 15(2): 325-333. DOI:

Darnajoux, R., Lutzoni, F., Miadlikowska, J., Bellenger, J.P. (2015): Determination of elemental baseline using peltigeralean lichens from Northeastern Canada (Québec): Initial data collection for long term monitoring of the impact of global climate change on boreal and subarctic area in Canada. Science of the Total Environment 533: 1-7. DOI:

Demková, L., Bobul’ská, L., Árvay, J., Jezný, T., Ducsay, L. (2017): Biomonitoring of heavy metals contamination by mosses and lichens around Slovinky tailing pond (Slovakia). Journal of Environmental Science and Health, Part A, Toxic/Hazardous Substances and Environmental Engineering 52(1): 30-36. DOI:

Abas, A. (2021): A systematic review on biomonitoring using lichen as the biological indicator: A decade of practices, progress and challenges. Ecological Indicators 121: 107-197. DOI:

Tarawneh, A.H., Salamon, I., Altarawneh, R., Mitra, J.(2021): Assessment of Lichens as Biomonitors of Heavy Metal Pollution in Selected Mining Area, Slovakia. Pakistan Journal of Analytical and Environmental Chemistry 22(1): 53-59. DOI:

Węgrzyn, M., Wietrzyk, P., Lisowska, M., Klimek, B., Nicia, P. (2016): What influences heavy metals accumulation in arctic lichen Cetrariella delisei in Svalbard? Polar Science 10(4): 532-540. DOI:

Winkler, A., Caricchi, C., Guidotti, M., Owczarek, M., Macrì, P., Nazzari, M., Amoroso, A., Di Giosa, A., Listrani, S. (2019): Combined magnetic, chemical and morphoscopic analyses on lichens from a complex anthropic context in Rome. Italy, Science of The Total Environment 690: 1355-1368. DOI:

Rola, K. (2020): Insight into the pattern of heavy-metal accumulation in lichen thalli. Journal of Trace Elements in Medicine and Biology 61: 126512. DOI :

Vannini, A., Tedesco, R., Loppi, S., Di Cecco, V., Di Martino, L., Nascimbene, J., Dallo, F., Barbante, C. (2021): Lichens as monitors of the atmospheric deposition of potentially toxic elements in high elevation Mediterranean ecosystems. Science of The Total Environment 798: 149369. DOI:

Dévéhat, F., Thüs, H., Abasq, M.L., Delmail, D., Boustie, J. (2014): Oxidative Stress Regulation in Lichens and Its Relevance for Survival in Coastal Habitats. Advances in Botanical Research 71: 467-503. DOI:

Expósito, J.R., Barreno, E., Catalá, M. (2022): 18 - Role of NO in lichens. In: Singh VP, Singh S., Tripathi D.K., Romero-Puertas M.C., Sandalio M.L. (eds), Nitric Oxide in Plant Biology. Academic Press, pp. 407-429. DOI:

Škvorová, Z., Černajová, I., Steinová, J., Peksa, O., Moya, P., Škaloud, P. (2022): Promiscuity in Lichens Follows Clear Rules: Partner Switching in Cladonia Is Regulated by Climatic Factors and Soil Chemistry. Frontiers in Microbiology 12. DOI:

Beckett, R., Minibayeva, F., Solhaug, K., Roach, T. (2021): Photoprotection in lichens: Adaptations of photobionts to high light. The Lichenologist 53(1): 21-33. DOI:

Chowaniec, K. and Rola, K. (2022): Evaluation of the importance of ionic and osmotic components of salt stress on the photosynthetic efficiency of epiphytic lichens. Physiology and Molecular Biology of Plants 28: 107–121. DOI:

Kraft, M., Scheidegger, C., Werth, S. (2022): Stressed out: the effects of heat stress and parasitism on gene expression of the lichen-forming fungus Lobaria pulmonaria. The Lichenologist 54: 71–83. DOI:

Hauck, M., Willenbruch, K., Leuschner, C. (2009): Lichen Substances Prevent Lichens from Nutrient Deficiency. Journal of Chemical Ecology 35: 71–73. DOI:

Kranner, I., Beckett, R., Hochman, A., Nash, III.T. (2009): Desiccation-Tolerance in Lichens: A Review. The Bryologist 111: 576-593. DOI:

Armstrong, R.A. (2017): Adaptation of Lichens to Extreme Conditions. In: Shukla V, Kumar S, Kumar N. (eds.). Plant Adaptation Strategies in Changing Environment. Springer, Singapore, pp. 1-27. DOI:

Karakoti, N., Bajpai, R., Upreti, D.K., Mishra, G.K., Srivastava, A., Nayaka, S. (2014): Effect of metal content on chlorophyll fluorescence and chlorophyll degradation in lichen Pyxine cocoes (Sw.) Nyl.: a case study from Uttar Pradesh, India. Environmental Earth Sciences 71(5). DOI: DOI:

Sujetovienė, G. (2015): Monitoring Lichen as Indicators of Atmospheric Quality. In: Upreti D, Divakar P, Shukla V, Bajpai R. (eds), Recent Advances in Lichenology. Vol. 1. Modern Methods and Approaches in Biomonitoring and Bioprospection. Springer, New Delhi, pp. 87-118. DOI:

Paoli, L., Munzi, S., Guttova, A., Senko, D., Sardella, G., Loppi, S. (2015) : Lichens as suitable indicators of the biological effects of atmospheric pollutants around a municipal solid waste incinerator (S Italy). Ecological Indicators 52. DOI:

Sujetovienė, G., Smilgaitis, P., Dagiliūtė, R., Žaltauskaitė, J. (2019): Metal accumulation and physiological response of the lichens transplanted near a landfill in central Lithuania. Waste Management 85: 60-65. DOI:

Khan, N., Ali, S., Zandi, P., Mehmood, A., Ullah, S., Ikram, M., Ismail, I., Shahid, M., Babar, Md. (2020): Role of sugars, amino acids and organic acids in improving plant abiotic stress tolerance. Pakistan Journal of Botany 52(2). DOI:

Mundada, P.S., Jadhav, S.V., Salunkhe, S.S., Gurme, S.T., Umdale, S.D., Nikam, T.D., Ahire, M.L. (2021): Plant Performance and Defensive Role of Proline Under Environmental Stress. In: Husen A. (ed.), Plant Performance Under Environmental Stress. Springer; Berlin/Heidelberg, pp. 201-223. DOI: 10.1007/978-3-030-78521-5_8.

Carreras, H.A. and Pignata, M.L. (2007): Effects of the heavy metals Cu2+, Ni2+, Pb2+, and Zn2+ on some physiological parameters of the lichen Usnea amblyoclada. Ecotoxicology and Environmental Safety 67(1):59-66. DOI:

Heath, R.L. and Packer, L. (1968): Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125(1): 189-198. DOI:

Ronen, R. and Galun, M. (1984): Pigment extraction from lichens with dimethyl sulfoxide (DM50) and estimation of chlorophyll degradation. Environmental and Experimental Botany 24: 239-245. DOI:

Troll, W. and Lindsley, J. (1955): A photometric method for the determination of proline. Journal of Biological Chemistry 215: 655-60. DOI:

Dubois, M, Gilles, KA, Hamilton, JK, Rebers, PA, Smith, F. (1956): Analytical Chemistry 28, 350-356.

Amine-Khodja, I.R., Boscari, A., Riah, N., Kechid, M., Maougal, R.T., Belbekri, N., Djekoun, A. (2022): Impact of Two Strains of Rhizobium leguminosarum on the Adaptation to Terminal Water Deficit of Two Cultivars Vicia faba. Plants 11(4): 515. DOI:

Toto, A., Wild, P., Graille, M., Turcu, V., Crézé, C., Hemmendinger, M., Sauvain, J.J., Bergamaschi, E., Canu, I.G., Hopf, N.B. (2022): Urinary Malondialdehyde (MDA) Concentrations in the General Population-A Systematic Literature Review and Meta-Analysis. Toxics 10(4): 160. DOI:

Singh, H., Kumar, D., Soni, V. (2020): Copper and mercury induced oxidative stresses and antioxidant responses of Spirodela polyrhiza (L.) Schleid. Biochemistry and Biophysics Reports 23: 100781. DOI:

Dzubaj, A., Backor, M., Tomko, J., Péli, E. and Tuba, Z. (2008): Tolerance of the lichen Xanthoria parietina (L.) Th. Fr. to metal stress. Ecotoxicology and Environmental Safety 70(2): 319-26. DOI: 10.1016/j.ecoenv.2007.04.002.

Pisani, T., Munzi, S., Paoli, L., Backor, M., Loppi, S. (2009): Physiological effects of a geothermal element: boron excess in the epiphytic lichen Xanthoria parietina (L.) TH. FR. Chemosphere 76(7): 921-6. DOI: 10.1016/j.chemosphere.2009.04.058.

El-Shora, H., Massoud, G., Gad, D. (2021): Activation of metabolic pathways associated with phenolic biosynthesis in Garden Cress leaves under lead stress. Project: Plant metabolites under stress. 11: 128-140. DOI: 10.33887/rjpbcs/2020.11.6.16.

Alsherif, E.A., Al-Shaikh, T.M. and AbdElgawad, H. (2022): Heavy Metal Effects on Biodiversity and Stress Responses of Plants Inhabiting Contaminated Soil in Khulais. Saudi Arabia. Biology 11(2): 164. DOI:

Fan, F., Chen, K., Xu, J., Abm, K., Chen, Y., Chen, L., and, Yan, X. 2022. Physiological effects induced by aluminium and fluoride stress in tall fescue (Festuca arundinacea Schreb). Ecotoxicology and Environmental Safety 231: 113192. DOI:

Kacienė, G., Žaltauskaitė, J., Milčė, E., Juknys, R. (2015): Role of oxidative stress on growth responses of spring barley exposed to different environmental stressors. Journal of Plant Ecology 8 (6): 605–616. DOI:

Gutiérrez-Martínez, P.B., Torres-Morán, M.I., Romero-Puertas, M.C., Casas-Solís, J., Zarazúa-Villaseñor, P., Sandoval-Pinto, E., Ramírez-Hernández, B.C. (2020): Assessment of antioxidant enzymes in leaves and roots of Phaseolus vulgaris plants under cadmium stress. Biotecnia 22 (2): 110-118. DOI:

Munzi, S., Pirintsos, S.A., Loppi, S. (2009): Chlorophyll degradation and inhibition of polyamine biosynthesis in the lichen Xanthoria parietina under nitrogen stress. Ecotoxicology and Environment Safety 72: 281-285. DOI: 10.1016/j.ecoenv.2008.04.013

Bajpai, R., Upreti, D.K., Nayakaa, S., Kumarib, B. (2010): Biodiversity, bioaccumulation and physiological changes in lichens growing in the vicinity of coal-based thermal power plant of Raebareli district, north India. Journal of Hazard Materials 174: 429-436. DOI:

Shukla, V. and Upreti, D. (2008): Effect of metallic pollutants on the physiology of lichen, Pyxine subcinerea Stirton in Garhwal Himalayas. Environmental Monitoring and Assessment 141: 237-243. DOI: 10.1007/S10661-007-9891-Z.

Bajpai, R., Shukla, V., Singh, N., Rana, T.S., Upeti, D.K. (2015): Physiological and genetic effects of chromium (+VI) on toxitolerant lichen species Pyxine cocoes. Environmental Science and Pollution Research 22(5): 3727-3738. DOI:

Sharma, R. and Singh, R. (2016): Air pollution biomonitoring in Delhi city by using lichen transplant technique. Cryptogam Biodiversity and Assessment 1(1): 55 – 63. DOI: -10.21756/cba. v1i1.11018.

Chetia, J., Gogoi, N., Gogoi, R., Yasmin, F. (2021): Impact of heavy metals on physiological health of lichens growing in differently polluted areas of central Assam, North East India. Plant Physiology Reports 26: 210-219. DOI:

Panda, D. (2015): Fluoride toxicity stress: physiological and biochemical consequences on plants. International journal of bio-resource, environment and agricultural sciences 1(1): 70-84.

Liang, X., Zhang, L., Natarajan, S.K., Becker, D.F. (2013): Proline Mechanisms of Stress Survival. Antioxidants and Redox Signaling 19(9). DOI:

Ghosh, U.K., Islam, M.N., Siddiqui, M.N., Cao, X., Khan, M.A.R. (2022): Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the physiological mechanisms. Plant Biology 24(2):227-239. DOI:

Alhasnawi, A. (2019): Role of proline in plant stress tolerance: A mini review. Resurrect Crops 20(1): 223-229. DOI:

Amri, A. and Layachi, N. (2018): Interactive effects of cadmium stress and proline on physiological and biochemical parameters of faba bean plant. International Journal of Biosciences 12(5): 88-100. DOI:

Li, C, Cao, Y, Li, T, Guo, M, Ma, X, Zhu, Y, Fan, J. (2022) : Changes in antioxidant system and sucrose metabolism in maize varieties exposed to Cd. Environmental Science and Pollution Research 15(12): e0243835. DOI:

Koleva, L., Umar, A., Yasin, N.A., Shah, A.A., Siddiqui, M.H., Alamri, S., Riaz, L., Raza, A., Javed, T., Shabbir, Z. (2022): Iron Oxide and Silicon Nanoparticles Modulate Mineral Nutrient Homeostasis and Metabolism in Cadmium-Stressed Phaseolus vulgaris. Frontiers in Plant Science 13: 806781. DOI:

Bhaskara, G.B., Yang, T.H., Verslues, P.E. (2015): Dynamic proline metabolism: Importance and regulation in water limited environments. Frontiers in Plant Science 6, 484. DOI:

Metwally, S.A., Shoaib, R.M., Hashish, K.I., El-Tayeb, T.A. (2019): In vitro ultraviolet radiation effects on growth, chemical constituents and molecular aspects of Spathiphyllum plant. Bulletin of the National Research Centre 43(94). DOI:

Iqbal, N., Fatma, M., Khan, N., Umar, S. (2019): Regulatory Role of Proline in Heat Stress Tolerance. In: Plant Signaling Molecules. Woodhead Publishing, pp. 437-448. DOI:

Gangola, M.P. and Ramadoss, B.R. (2018): Chapter 2 - Sugars Play a Critical Role in Abiotic Stress Tolerance in Plants. In: Wani SH. (ed.), Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress Tolerance in Plants, first ed. Academic Press, pp. 17-38. DOI:

Gandonou, C.B., Bada, F., Abrini, J., Skali-Senhaji, N. (2011): Free proline, soluble sugars and soluble proteins concentration asaffected by salt stress in two sugarcane (Saccharum sp.) cultivars differing in their salt tolerance. International Journal of Biological and Chemical Sciences 5(6): 2441-2453. DOI:

Abbaspour, H., Afshari, H., Abdel-Wahhab, M.A. (2012): Influence of salt stress on growth, pigments, soluble sugars and ion accumulation in three pistachio cultivars. Journal of Medicinal Plants Research 6(12): 2468-2473. DOI:

Du, Y., Zhao, Q., Chen, L., Yao, X., Zhang, W., Zhang, B., Xie, F. (2020): Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Plant Physiology and Biochemistry 146: 1-12. DOI:

Zhao, X., Huang, L.J., Sun, X.F., Zhao, L.L., Wang, P.C. (2022): Transcriptomic and Metabolomic Analyses Reveal Key Metabolites, Pathways and Candidate Genes in Sophora davidii (Franch.) Skeels Seedlings Under Drought Stress. Frontiers in Plant Science 13. DOI:

Aldoobie, N.F. and Beltagi, M.S. (2013): Physiological, biochemical and molecular responses of common bean (Phaseolus vulgaris L.) plants to heavy metals stress. African Journal of Biotechnology 12(29): 4614-4622. DOI:

Ahmad, F., Singh, A., Kamal, A. (2020): Osmoprotective Role of Sugar in Mitigating Abiotic Stress in Plants. In: Roychoudhury A, Tripathi DK. (eds.). Protective Chemical Agents in the Amelioration of Plant Abiotic Stress. Biochemical and Molecular Perspectives pp. 53-70. DOI:




How to Cite

Benhamada, O., Benhamada, N., & Leghouchi, E. (2023). SOME INDICATORS OF DAMAGES AND RESPONSES OF XANTHORIA PARIETINA (L.) Th. Fr. TO FLUORIDE AND LEAD INDUCED-STRESS. Journal of Applied Biological Sciences, 17(1), 69–82. Retrieved from