Abstract views: 49 / PDF downloads: 127


  • Emel Ünlü
  • Akife Dalda Şekerci
  • Semih Yılmaz
  • Halit yetişir


Vegetable, Bacillus megaterium, biofertilizer, biostimulant


Excessive and unconscious use of chemical fertilizers and pesticides in crop production causes deterioration of soil health, environmental pollution, and an increase in the population of pathogens and pests in the soil. There are many toxic and dangerous chemicals in agricultural ecosystems, and they get into plants, soil, groundwater, and food. As an alternative way to solve this problem, it is very important to use beneficial microorganisms, to use biological agents instead of chemicals in agriculture, and to promote the resistance to biotic and abiotic stress conditions and to increase the yield of plants. Microbial fertilizers, which are becoming increasingly widespread in plant production, are produced from formulations containing Bacillus megaterium, especially from Bacillus group bacteria. In this study, Bacillus megaterium, E-U2-1 (OL673801 EU. U21-NCBI accession code) strain carrying phytase, phosphatase, siderophore, and indole acetic acid encoding genes was used for the trials. A field trial was carried out with some vegetable species (pepper, eggplant, cucumber, watermelon, melon, and snake cucumber) with high economic value. In the study, 5 ml, 10 ml, and 15 ml of bacterial suspensions with 3x107 cfu were applied per plant from the soil. It was determined that it increased vegetative growth and shortened the flowering period in all species. The effect of the bacterial application on the important agronomic properties of vegetables was investigated, and it was determined that especially 10 ml and 15 ml applications had a positive effect on yield and quality parameters. A significant increase was recorded vegetatively, and while flowering was observed in the earlier period, it was determined that the number of flowers increased considerably. Accordingly, the fruit setting rate increased.


Antoun, H., and Prevost, D. (2006): “Ecology of plant growth promoting printed in the netherlands: PGPR: Biocontrol and biofertilization rhizobacteria”, Ed.: Siddiqui, Z.A., Printed in the Netherlands pp: 1-38.

Higa, T., Parr, J. F. (1994): “Beneficial and effective microorganisms for a sustainable agriculture and environment”, International Nature Farming Research Center, Atami, Japan. s.16.

Bloemberg, G. V., Lugtenberg, B. J. J.(2001): “Molecular Basis of Plant Growth Promotion And Biocontrol By Rhizobacteria”, Current Opinion İn Plant Biology 4, 343–350.

Orhan, E., Esitken, A., Ercisli, S., Turan, M. and Sahin, F. (2006): Effects of Plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Scienta Horticulture 111, 38–43.

Çakmakçi, R., Erat, M., Oral, B., Erdogan, Ü., Șahin, F. (2009): Enzyme activities and growth promotion of spinach by indole-3-acetic acid-producing rhizobacteria, The Journal of Horticultural Science and Biotechnology 84:4, 375-380.

Zhou, J., Xia, B., Huang, H. (2003): “Bacterial phylogenetic diversity and a novel candidate division of two humid region, sandy surface soils”. Soil Biology and Biochemistry 35, 915–924.

Dobbelaere, S., Vanderleyden, J., Okon, Y. (2003): Plant Growth Promoting Effects of Diazotrophs in the Rhizosphere. Critical Reviews in Plant Sciences 22:2, 107-149.

Çakmakçı, R. 2005. Bitki Gelişiminde Fosfat Çözücü Bakterilerin Önemi. S.Ü. Ziraat Fakültesi Dergisi 19 (35), 93-108

Lucy M, Reed E, Glick, BR. (2004): “Application of free-living plant growth-promoting rhizobacteria”. (Antonie van Leeuwenhoek) Kluwer Academic 86: 1-25.

Tsegaye, Z., Fassil, A., Dereje, B. (2017): Propertiesand Application of Plant Growth Promoting Rhizobacteria. 2(1): 30-43.

Kotan, R., Şahin, F. (2002): Use of bacterial organisms in biological control of Plant disease. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 33, 111-119.

Çakmakçı, R., Dönmez, F., Aydın A., Şahin, F. (2006): Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biology & Biochemistry 38: 1482–1487.

Amer, G. A and Utkheda, R. S. (2000): Development of formulation of biologica agents for management of root rot of lettuce and cucumber. Can. J. Microbiol. 46: 809–816.

Hecht-Buchholz, C. (1998): The apoplast-habitat of endophytic dinitrogen-fixing bacteria and their significance for the nitrogen nutrition of nonleguminous plants. Z. Pflonrenerniihr. Bodenk., 161, 509-520.

Esitken, A., H. Karlidag, S. Ercisli, M. Turan and F. Sahin (2003): The effect of spraying a growth promoting bacterium on the yield, growth and nutrient element composition of leaves of apricot (Prunus armeniaca L. cv. Hacihaliloglu). Aust. J. Agric. Res., 54: 377-380.

Kumar, V. and Narula, N. (1999): Solubilization of inoranic phosphates and growth emergence of wheat as affected by Azotobacter chrococcum. Biol Fert Soils, 28, 301-305.

Şahin, F., Çakmakçı, R., Kantar, F. (2004): Sugarbeet and barley yields in relation to inoculation with N2- fixing and phosphate solubilizing bacteria. Plant Soil, 265:123-129.

Somasegaran P., Hoben H.J. (1982): Comparison of the pour, spread and drop-plate methods for the enumeration of Rhizobium spp. in inoculants made from presterilized peat. Appl. Environ. Microbiol. 44: 1246–1247.

Upadhyay, S. K., Singh, D. P., Saikia, R. (2009): Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Current microbiology 59(5), 489-496.

Palabiyik B, Kig C, Pekmez M, Dalyan L, Arda N, Temizkan G. (2012): Investigation of the relationship between oxidative stress and glucose signaling in Schizosaccharomyces pombe. Biochem Genet.,50: 336–349.

Wilson K. (2001): Preparation of genomic DNA from bacteria. Current Protocol of Molecular Biology 2: 2

Claydon MA, Davey SN, Edwards-Jones V, Gordon DB.(1996): The rapid identification of intact microorganisms using mass spectrometry. Nat Biotechnol. 14: 1584–1586.

Demirev P, Ho Y, Ryzhov V, chemistry CF-A (1999): undefined. Microorganism identification by mass spectrometry and protein database searches. ACS Publ. 1998;282: 2732.

Freitas, D. B., Reis, M. P., Lima-Bittencourt, C. I., Costa, P. S., Assis, P. S., Chartone-Souza, E., Nascimento, A. (2008): Genotypic and phenotypic diversity of Bacillus spp. isolated from steel plant waste. BMC Research Notes, 1(1), 1-11.

Holland, R. D., Wilkes, J. G., Rafii, F., Sutherland, J. B., Persons, C. C., Voorhees, K. J., Lay Jr, J. O. (1996): Rapid identification of intact whole bacteria based on spectral patterns using matrix‐assisted laser desorption/ionization with time‐of‐flight mass spectrometry. Rapid Communications in Mass Spectrometry 10(10), 1227-1232.

Krishnamurthy T, Ross PL, Yates JR, Wiley J. (1996): Rapid Identification of Bacteria by Direct Matrix-assisted Laser Desorption/Ionization Mass Spectrometric Analysis of Whole Cells. RAPID Commun MASS Spectrom. 10: 1992–1996.

Ryzhov V, Fenselau C. (2001): Characterization of the protein subset desorbed by MALDI from whole bacterial cells. Anal Chem. 73: 746–750.

Vasileuskaya-Schulz Z, Kaiser S, Maier T, Kostrzewa M, Jonas D. (2011): Delineation of Stenotrophomonas spp. by multi-locus sequence analysis and MALDI-TOF mass spectrometry. Syst Appl Microbiol. 34: 35–39.

Kokalis-Burelle et al. (2002): N. Kokalis-Burelle, C.S. Vavrina, E.N. Rosskopf, R.A. Shelby. Field evaluation of plant growth-Promoting rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil, 238 pp. 257-266.

Mirik M., Aysan Y. and Çınar Ö. (2008): Biological control of bacterial spot disease of pepperwith Bacillus strains. Turk. J. Agric. Forest 32: 381-390

Akdemir, K. (2018): Bakteri Formülasyonlarının Dolmalık Biberde Bitki Gelşimi, Verim ve Mineral Madde İçeriği Üzerine Etkisi. Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Yüksek lisans tezi.87 s.

Kandil, S. (2019): Mikrobiyal Gübre Kullanımının Patlıcan (Solanum melongena L.) Ve Lahana (Brassica oleraceae var. capitata) Fidelerinde Büyüme Ve Gelişme Üzerine Etkileri. Fen Bilimleri Enstitüsü Bahçe Bitkileri Anabilim Dalı, Yüksek Lisans Tezi. 53 s.

Yağmur, B. (2019): Organik Tarımda Bitki Gelişimini Teşvik Eden Bazı Bakterilerin (PGPR) Domates Bitkisinin Verim ve Kalite Parametreleri Üzerine Etkileri. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Yüksek lisans tezi 83 Sayfa.

Turan M., Ataoğlu N., Sezen Y. (2004): Fosfor çözücü bakterinin (Bacillus megaterium) domates (Lycopersicon esculentum L.) bitkisinin verimi ve fosfor alımı üzerine etkisi, Türkiye 3. Ulusal Gübre Kongresi, Tarım-Sanayi-Çevre, 11-13 Ekim 2004, Tokat, Bildiri Kitabı I. Cilt, 939-944.

Dursun, A., Ekinci, M., Dönmez, M.F., Eminağaoğlu, H. (2010): Rhizobakteri Uygulamalarının Kornişon Hıyar (Cucumis sativus L.)’da Bitki Gelişimi ve Verime Etkisi, VIII. Sebze Tarımı Sempozyumu, Van, 435-439.

Seymen, M., Türkmen, Ö., Dursun, A., Dönmez, M.F. and Paksoy, M. (2010): Effects of Bacterium Inoculation on Yield and Yield Component Cucumber (Cucumis sativus). Bulletin UASVM Horticulture 67(1): 274-277.

Assunta MP, Persiani A, D’Adamo C, Pergola M, Pastore V, Sileo R, Ippolito G, Lombardi MA, Celano G (2020): Composting as Manure Disposal Strategy in Small/Medium-Diameter Livestock Farms: Some Demonstrations with Operative Indications. Sustainability 12, 3315.

Dube, J., Ddamulira, G., Maphosa, M. (2021): Watermelon production in Africa: challenges and opportunities. International Journal of Vegetable Science 27(3), 211-219.

Türkoğlu, M. (2019): Farklı kavun (Cucumis melo L.) çeşitlerinde PGPR kullanımının verim ve kalite üzerine etkileri. Yüksek lisans tezi, Van Yüzüncü Yıl Üniversitesi, Van, 74 s.

Schilling, G., A. Gransee, A. Deubel, G. LezovicandS. Ruppel. (1998): Phosphorus availability, root exudates, and microbial activity in therhizosphere. Z. Pflanzenernähr. Bodenkd. 161, 465-478.

Nautiyal, C. S., Bhadauria, S., Kumar, P., Lal, H., Mondal, R., Verma, D. (2000): Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiology Letters 182(2), 291-296.

Patten, C. L., Glick, B. R. (2002): Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and Environmental Microbiology 68(8), 3795-3801.




How to Cite

Ünlü, E., Dalda Şekerci, A., Yılmaz, S., & Yetişir, H. (2023). FIELD TRIAL OF PGPR, Bacillus megaterium E-U2-1, ON SOME VEGETABLE SPECIES. Journal of Applied Biological Sciences, 17(1), 125–137. Retrieved from