COMPOSITION, PHYSICO-CHEMICAL AND ANTIOXIDANT PROPERTIES OF OCIMUM GRATISSIMUM L. ESSENTIAL OIL FROM BURKINA FASO

Abstract views: 275 / PDF downloads: 335

Authors

Keywords:

GC-MS, phenolic compounds,, standard ISO

Abstract

Ocimum gratissimum L. is an aromatic herbaceous plant that is native to tropical countries especially West Africa, India and South America. It has been traditionally used for medicinal, condiment and culinary purposes and many biological properties have been reported on its essential oils (EOs). This study aims to determine the physico-chemical parameters and assess the antioxidant potential of this plant’s EO. Thus, fresh leaves of O. gratissimum were collected from the cultivated field of Irsat (Ouagadougou), Burkina Faso at the full blooming stage. These leaves were hydrodistilled and analyzed immediately after collection (fresh) to evaluate the quality of volatile constituents in terms of composition by GC-MS. Physico-chemical properties were determined by using international standards ISO. The antioxidant activity was determined by 2,2’-diphenyl-1- picrylhydrazyl (DPPH) radical scavenging and the 2,2’ azinobis 3 ethylbenzothiazoline 6 sulfonic acid (ABTS) methods. The study revealed the presence of thymol (29.5%), γ-terpinene (20.5%) and p-cymene (12.9%) as EO major constituents. For physico-chemical parameters, the relative density value was less than 1. A low content of free acids was found. The EO had low light refraction and was found to be dextro-rotatory. The EO was soluble in 7 volumes of ethanol (70%) and values obtained for the acid index and refractive index were less than 2. The antioxidant activity showed DPPH radical inhibition value of 41.16 % at 0.1% of EO concentration with an IC50 value of 3.9 μg/ml. The ABTS radical inhibition value was 36.14 % at 0.1% of EO concentration with an IC50 value of 3.13 mg/ml. The present study has permitted to verification of the quality of O. gratissimum EO produced in Burkina Faso and showed that this oil could be a promising source of antioxidant compounds.

References

Meulmeester, FL., Luo, J., Martens, LG., Mills, K., van Heemst, D., Noordam, R (2022): Antioxidant Supplementation in Oxidative Stress-Related Diseases: What Have We Learned from Studies on Alpha-Tocopherol? Antioxidants 11: 2322.

Liu, Z., Ren, Z., Zhang, J., Chuang, CC., Kandaswamy, E., Zhou, T., Zuo, L (2018): Role of ROS and Nutritional Antioxidants in Human Diseases. Front. Physiol. 9: 477.

Juan, AC., Manuel Pérez, J., de la Lastra, F., Plou, J., Pérez-Lebeña, E., Reinbothe, S (2021): The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining their role in biological macromolecules (DNA, Lipids and Proteins) and induced pathologies. Int. J. Mol. Sci 22(9): 4642.

Lourenço, SC., Moldão-Martins, M., Alves, VD (2019): Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 24 (22): 4132.

Diniz do Nascimento, L., Moraes, AAB., Costa, KSD., Pereira Galúcio, JM., Taube, PS., Costa, CML., Neves Cruz, J., de Aguiar Andrade, EH., Faria, LJG (2020) : Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants : New Findings and Potential Applications. Biomolecules. 10(7): 988.

Šojić, B., Milošević, S., Savanović, D., Zeković, Z., Tomović, V., Pavlić, B (2023) : Isolation, Bioactive Potential, and Application of Essential Oils and Terpenoid-Rich Extracts as Effective Antioxidant and Antimicrobial Agents in Meat and Meat Products. Molecules 28(5): 2293.

Odeh, D., Oršolić, N., Berendika, M., Đikić, D., Domjanić Drozdek, S., Balbino, S., Repajić, M., Dragović-Uzelac, V., Jurčević, IL (2022) : Antioxidant and Anti-Atherogenic Activities of Essential Oils from Myrtus communis L. and Laurus nobilis L. in Rat. Nutrients 14(7):1465.

Akara, EU., Emmanuel, O., Ude, VC., Uche-Ikonne, C., Eke, G., Ugbogu, EA (2021): Ocimum gratissimum leaf extract ameliorates phenylhydrazine-induced anaemia and toxicity in Wistar rats. Drug Metab Pers Ther 36: 311–320.

Dharsono, HDA, Putri, SA., Kurnia, D., Dudi, D., Satari, M.H (2022). Ocimum Species: A Review on Chemical Constituents and Antibacterial Activity. Molecules 27: 6350.

Silva, JC., Pereira, RLS., De Freitas, TS., Rocha, JS., Macedo, NS., Nonato, CFA., Marina Leite Linhares, ML., Tavares, DSA., Da Cunha, FAB., Coutinho, HDM., De Lima, SG., Pereira-Junior, FN., Maia, FPA., Neto, ICP., Galvao ˜ Rodrigues, FF., Santos, GJG (2022): Evaluation of antibacterial and toxicological activities of essential oil of Ocimum gratissimum L. and its major constituent eugenol. Food Bioscience 50 (2022): 102128.

Ugbogu OC., Okezie, E., Agi, GO., Ibé, C., Ekweogu, CN., Ude, VC., Uche, ME., Nnanna, RO., Ugbogu EA (2021): A review on the traditional uses, phytochemistry, and pharmacological activities of clove basil (Ocimum gratissimum L.). Heliyon 7(11): e08404.

Vilanovaa, CM., Kátia Pereira Coelho, KP., Luza, TRSA., Silveiraa, DPB., Denise Fernandes Coutinho, DF., De Moura, FG (2018): Effect of different water application rates and nitrogen fertilisation on growth and essential oil of clove basil (Ocimum gratissimum L.). Industrial Crops and Products 125 (2018): 186-197.

Melo, RS., ORCID, Azevedo, AMA., Pereira, AMG., Renan Rhonalty Rocha, RR., Cavalcante, RFB., Matos, MNC., Lopes, PHR., Gomes, GA., Rodrigues, THS. , Dos Santos, HS., Ponte, IL., Costa, RA., Brito, GS., Júnior, FEAC., Carneiro, VA (2019): Chemical Composition and Antimicrobial Effectiveness of Ocimum gratissimum L. Essential Oil Against Multidrug-Resistant Isolates of Staphylococcus aureus and Escherichia coli. Molecules 24(21): 3864.

Vieira, AJ., Beserra, FP., Souza, MC., Totti, MB., Rozza, AL (2018): Limonene: Aroma of innovation in health and disease. Chem Biol Interact 283: 97–106.

ISO Standard 279 (1998): Huiles essentielles — Détermination de la densité relative à 20 °C — Méthode de référence. Essential oils— determination of relative density at 20 degrees C. Reference method.

ISO Standard 280 (1998): Huiles essentielles-Détermination de l’indice de réfraction, deuxième édition.

ISO Standard 592 (1998): Huiles essentielles-Détermination du pouvoir rotatoire, deuxième édition.

ISO Standard 875 (1999): Huiles essentielles-Évaluation de la miscibilité à l’éthanol, Deuxième édition.

ISO Standard 1242 (1999): Huiles essentielles-Détermination de l’indice d’acide, deuxième édition.

Ling, Q., Zhang, B., Wang, Y., Xiao, Z., Hou, J., Xiao, C., Liu, Y., Jin, Z (2022): Chemical Composition and Antioxidant Activity of the Essential Oils of Citral-Rich Chemotype Cinnamomum camphora and Cinnamomum bodinieri. Molecules 27:7356.

Nguemtchouin, MGM., Ngassoum, MB., Chalier, P., Kamga, R., Ngamo, LST., Cretin,M (2013) : Ocimum gratissimum essential oil and modified montmorillonite clay, a means of controlling insect pests in stored products. J Stored Prod Res 52: 57–62.

Joshi, RK (2021): Antioxidant Activity Influenced by Seasonal Variation of Essential Oil Constituents of Ocimum gratissimum L. ACS Food Sci. Technol 1 (9): 1661–1669.

Adjou, ES., KoutonS., Dahouenon-Ahoussi, E., Soumanou, MM., Sohounhloue, DCK (2013): Effect of essential oil from fresh leaves of Ocimum gratissimum L. on mycoflora during storage of peanuts in Benin. Mycotoxin Res 29: 29–38.

Kpoviessi, BGHK., D.S.S Kpoviessi, DSS., Ladekan, EY., Gbaguidi, F., Frédérich, M., Moudachirou, M., Quetin-Leclercq, J., Acrmbessi, GC., Bero J (2014): In vitro antitrypanosomal and antiplasmodial activities of crude extracts and essential oils of Ocimum gratissimum Linn from Benin and influence of vegetative stage. J Ethnopharmacol 155: 1417–1423.

Joseph, M., Gladrich, M.T.F., Emmanuelle, L.M.J., Makanga O.L.D. Attibayeba (2022): Effets Insecticide et Insectifuge des Huiles Essentielles de Cinq Plantes Aromatiques sur la Bruche de Haricot Cultivé en République du Congo. ESI Preprints. https://doi.org/10.19044/esipreprint.12.2022.p361.

Karimi, A., Krähmer, A., Herwig, N., Schulz, H., Hadian, J., Meiners, T (2020): Variation of Secondary Metabolite Profile of Zataria multiflora Boiss. Populations Linked to Geographic, Climatic, and Edaphic Factors. Front. Plant Sci. 11:969.

Ouedraogo, I., Sawadogo, A., Nébié, RCH., Dakouo, D (2016): Evaluation de la toxicité des huiles essentielles de Cymbopogon nardus (L) et Ocimum gratissimum (L) contre Sitophilus zeamais Motsch et Rhyzopertha dominica F, les principaux insectes nuisibles au maïs en stockage. Int J Biol Chem Sci 10: 695.

Kobenan, CK., Brou, JK., Kouadio, KNB., Malanno, K., Acka, ED., Ochou, GO (2019): Effets des Huiles Essentielles de Ocimum gratissimum L. et de Cymbopogon citratus Stapf sur les paramètres de croissance et de production du cotonnier en Côte d’Ivoire. European Journal of Scientific Research 154:21–35.

Kassi, FJM., Kouame, KG., Bolou, BBA., Kone, D (2020): Composition chimique de l’huile essentielle extraite des feuilles fraiches de Ocimum gratissimum et évaluation de sa fongitoxicité sur 3 isolats de Fusarium oxysporum lycopersici, parasite tellurique en culture de tomate. Afrique SCIENCE 16 : 226–237.

Melo, RS., Azevedo, AMA., Pereira, AMG., Rocha, RR., Cavalcante, RMB., M. N. C Matos, MNC., Lopes, PHR., Gomes, GA., Rodrigues, THS., Dos Santos, HS., Ponte, IL., Costa, RA., Brito, GS., Junior, FEAC., Carneiro, VA (2019): Chemical composition and antimicrobial effectiveness of Ocimum gratissimum essential oil against multidrug-resistant isolates of Staphylococcus aureus and Escherichia coli. Molecules 24(21): 3864.

Moghaddam, HH., Jafari, AA., Sefdkon, F, Jari, SK (2023): Infuence of climatic factors on essential oil content and composition of 20 populations of Nepeta binaludensis Jamzad from Iran. Applied Biological Chemistry 66 :2.

Valarezo, E., Vullien, A., Conde-Rojas, D. (2021): Variability of the Chemical Composition of the Essential Oil from the Amazonian Ishpingo Species (Ocotea quixos). Molecules 26: 3961.

Huong, NC., Ngan, TTK., Anh, TT, Le, XT., T D Lam, TD., Cang, MH., T T T Huong, TTT., Pham, NDY (2020): Physical and Chemical Profile of Essential oil of Vietnamese Ocimum gratissimum L. IOP Conf. Series: Materials Science and Engineering 736 (2020) :062010.

Islam, AKMA., Yaakob, Z., Ghani, JA., Alareefy, A., Abdulsalam, NM., Khateeb, NA., Zidan, N., Abdelazi, MA., El Sabagh, A., Sakran, MI., Omran, A., El Askary, A., El-Sharnouby M., Aziz albalawi, M., Mominul Islam, AKM (2022): Genotype and age of industrial plant Jatropha curcas L. affect physico-chemical properties of seed oil. Front. Energy Res. 10:979217.

Dewi, IA., Prastyo, AM., Wijana, S., Ihwah, A (2022): Characterization of essential oil from baby java orange (Citrus sinensis) solid waste. IOP Conf. Series: Earth and Environmental Science 230 (2019): 012087.

Tanuja, GP., Dholakia, BB., Giri, AP (2022): A glance at the chemodiversity of Ocimum species: Trends, implications, and strategies for the quality and yield improvement of essential oil. Phytochemistry Reviews 21: 879–913.

Aribi-Zouioueche, L., Couic-Marinier, F (2021): Huiles essentielles et chiralité moléculaire. Comptes Rendus Chimie 24 (3) : 397–414.

Oroojan, A.A., Chenani, N., Marzieh An’aam, M (2020): Antioxidant Effects of Eugenol on Oxidative Stress Induced by Hydrogen Peroxide in Islets of Langerhans Isolated from Male Mouse. International Journal of Hepatology 2020: 5890378.

De Castro, JAM., Monteiro, OS., Coutinho, DF., Rodrigues, AAC., Da Silva, JKR., Maia, JGS (2019): Seasonal and circadian study of a thymol/γ-terpinene/p-cymene type oil of Ocimum gratissimum L. and its antioxidant and antifungal effects. J Braz Chem Soc 30: 930–938.

Sohilait, HJ., Kainama, H (2019): Free Radical Scavenging Activity of Essential Oil of Eugenia caryophylata from Amboina Island and Derivatives of Eugenol. Open Chem. 17: 422–428.

Türkuçar, SA., Karaçelik, AA., Karaköse, M (2021): Phenolic compounds, essential oil composition, and antioxidant activity of Angelica purpurascens (Avé-Lall.) Gill. Turk J Chem 45(3): 956-966.

Munteanu, I.G., Apetrei, C. (2021): Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci 22: 3380.

Hu, W., Sarengaowa, Guan, SY., Feng, K (2022): Biosynthesis of Phenolic Compounds and Antioxidant Activity in Fresh-Cut Fruits and Vegetables. Front. Microbiol. 13 (2022). https://doi.org/10.3389/fmicb.2022.906069.

Lebedev, VG., Lebedeva, TN., Vidyagina, EO, Sorokopudov, VN, Popova, AA., Shestibratov, KA (2022): Relationship between Phenolic Compounds and Antioxidant Activity in Berries and Leaves of Raspberry Genotypes and Their Genotyping by SSR Markers. Antioxidants 11: 1961.

Xiang, J., Apea-Bah, FB., Ndolo, VU., Katundu, MC., Beta, T (2019): Profile of phenolic compounds and antioxidant activity of finger millet varieties. Food Chem. 275: 361-368.

Aebisher, D., Cichonski, J., Szpyrka, E., Masjonis, S., Chrzanowski, G (2021): Essential oils of seven Lamiaceae plants and their antioxidant capacity. Molecules 26(13): 3793.

Downloads

Published

2023-10-25

How to Cite

Coulibaly, A., Sawadogo, I., Toé, M., Hema, M. D., Bationo, K. R., Kiendrebeogo, M., & Nébié, C. R. (2023). COMPOSITION, PHYSICO-CHEMICAL AND ANTIOXIDANT PROPERTIES OF OCIMUM GRATISSIMUM L. ESSENTIAL OIL FROM BURKINA FASO. Journal of Applied Biological Sciences, 17(3), 486–499. Retrieved from https://jabsonline.org/index.php/jabs/article/view/1192

Issue

Section

Articles