Abstract views: 49 / PDF downloads: 96



Bioethanol, defatted biomass, fermentation, Tetradesmus dimorphus, municipal wastewater, ultrasonic pretreatment


Microalgae biomass is considered an emerging source for future generation feedstock for both biodiesel and bioethanol production due to the accumulation of high amounts of lipids and carbohydrates respectively. In this present investigation, 70% ultrasonic pre-treated municipal wastewater (MWW) grown defatted mutant green microalga, Tetradesmus dimorphus EMS2 biomass was ultrasonic pretreated for hydrolysate preparation and its essential process parameters were statistically optimized using CCD-RSM. The prepared hydrolysate used as a cheap culture medium for bioethanol production by fermentation using Saccharomyces cerevisiae NITTS1. The maximum bioethanol yield of 51.45±0.12 gL-1 was obtained from the hydrolysate prepared from 55 g L-1 defatted biomass pretreated at 0.35 WL-1 ultrasonic density for 20 min than un-pretreated defatted biomass. The hydrolysate prepared from 55 gL-1 defatted biomass primarily contained simple sugars such as glucose (78.17±0.13 % w/w) and xylose (16.02±0.21 % w/w). Further, in this study, the essential physical parameters were optimized by the classical method and found that the maximum bioethanol of 54.36±0.11 g L-1 was produced at optimum fermentation conditions of 30 ℃, pH 4 and 150 rpm. This finding suggests that ultrasonic pretreated MWW grown defatted mutant T. dimorphus EMS2 biomass could be used as an ecofriendly-sustainable feedstock for bioethanol production after ultrasonic pretreatment.


Energy statistics. (2022): (Twenty ninth issue). Central statistics office. New Delhi: Ministry of statistics and programme implementation, Government of India.

International Energy Agency (IEA). (2021): India energy outlook 2021, World energy outlook special report 2021. 2021.

Azad, A.K., Rasul, M.G., Khan, M.M.K., Sharma, S.C., Bhuiya, M.M.K., Mofijur, M. (2016): A review on socio-economic aspects of sustainable biofuels. International Journal of Global Warming 10(1-3): 32-54.

Rawat, I., Ranjith Kumar, R., Mutanda, T., Bux, F. (2013): Biodiesel from Microalgae: A Critical Evaluation from Laboratory to Large Scale Production. J. Appl. Ener 103: 444–467.

Dhandayuthapani, K., Kumar, P.S., Chia, W.Y., Chew, K.W., Karthik, V., Selvarangaraj, H., Selvakumar, P., Sivashanmugam, P., Show, P.L. (2022): Bioethanol from hydrolysate of ultrasonic processed robust microalgal biomass cultivated in dairy wastewater under optimal strategy. Energy 244: 122604.

Sánchez-Bayo, A., López-Chicharro, D., Morales, V., Espada, J.J., Puyol, D., Martínez, F., Astals, S., Vicente, G., Bautista, L.F., Rodríguez, R. (2020): Biodiesel and biogas production from Isochrysis galbana using dry and wet lipid extraction: A biorefinery approach. Renewable Energy 146: 188-195.

Vohra, M., Manwar, J., Manmode, R., Padgilwar, S., Patil, S. (2014): Bioethanol production: Feedstock and current technologies. Journal of Environmental Chemical Engineering 2(1): 573-584.

Hester L.K., Shaunita H.R., Marinda V-B., Willem H.Z. (2017): Production of ethanol from steam exploded triticale straw in asimultaneous saccharification and fermentation process. Process Biochemistry 53: 10–16.

Selvakumar, P., Kavitha, S., Sivashanmugam, P. (2019): Optimization of process parameters for efficient bioconversion of thermo-chemo pre-treated Manihot esculenta Crantz YTP1 stem to ethanol. Waste and Biomass Valorization 10: 2177-2191.

Dhandayuthapani, K., Sarumathi, V., Selvakumar, P., Temesgen, T., Asaithambi, P., Sivashanmugam, P. (2021): Study on the ethanol production from hydrolysate derived by ultrasonic pretreated defatted biomass of Chlorella sorokiniana NITTS3. Chemical Data Collections 31: 100641.

Ngamsirisomsakul, M., Reungsang, A., Liao, Q., Kongkeitkajorn, M.B. (2019): Enhanced bio-ethanol production from Chlorella sp. biomass by hydrothermal pre-treatment and enzymatic hydrolysis. Renewable Energy 141: 482-492.

Ozçimen, D., Koçer, A.T., İnan, B., Ozer, T. (2020): Bioethanol production from microalgae. In Kim S.K. (ed.). Handbook of microalgae-based processes and products. Academic Press, pp.373-389.

Rawat, I., Ranjith Kumar, R., Mutanda, T., Bux, F. (2011): Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl. Energy 88: 3411–3424.

Sudhakar, K., Premalatha, M., Rajesh, M. (2014): Large-scale open pond algae biomass yield analysis in India: a case study. International Journal of Sustainable Energy 33(2): 304-315.

Matsumoto, H., Hamasaki, A., Sioji, N., Ikuta, Y. (1997): Influence of CO2, SO2 and NO in flue gas on microalgae productivity. Journal of Chemical Engineering of Japan 30(4): 620-624.

Luo, Y., Le-Clech, P., Henderson, R.K. (2017): Simultaneous microalgae cultivation and wastewater treatment in submerged membrane photobioreactors: a review. Algal Research 24: 425-437.

Ju, Z.Y., Deng, D-F., Dominy W. (2012): A defatted microalgae (Haematococcus pluvialis) meal as a protein ingredient to partially replace fishmeal in diets of Pacific white shrimp (Litopenaeus vannamei, Boone, 1931). Aquaculture 354–355: 50-55.

Nobre, B.P., Villalobos, F., Barragan, B.E., Oliveira, A.C., Batista, A.P., Marques, P.A.S.S., Mendes, R.L., Sovová, H., Palavra, A.F., Gouveia, L. (2013): A biorefinery from Nannochloropsis sp. microalga extraction of oils and pigments. Production of biohydrogen from the leftover biomass. Bioresource Technology 135: 128-136.

Leng, X., Hsu, K-N., Austic, R.E., Lei, X. (2014): Effect of dietary defatted diatom biomass on egg production and quality of laying hens. Journal of Animal Science Biotechnology 5 (1): 5-7.

Fetyan, N.A., El-Sayed, A.E.K.B., Ibrahim, F.M., Attia, Y.A., Sadik, M.W. (2022): Bioethanol production from defatted biomass of Nannochloropsis oculata microalgae grown under mixotrophic conditions. Environmental Science and Pollution Research 29: 2588-2597.

Chaudhary, L., Pradhan, P., Soni, N., Singh, P., Tiwari, A. (2014): Algae as a feedstock for bioethanol production: new entrance in biofuel world. International Journal of ChemTech Research 6(2): 1381-1389.

Sivasankar, P., Dhandayuthapani, K., Shanthi, K. (2017): Production of ethanol using hydrolysates derived from acid pre-treated defatted biomass Nannochloropsis limnetic. International Journal Recent Scientific Research 8(8): 19392-19395.

Bligh, E.G., Dyer, W.J. (1959): A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37: 911- 917.

Yiying, J.I.N., Huan, L.I., Mahar, R.B., Zhiyu, W.A.N.G., Yongfeng, N.I.E. (2009): Combined alkaline and ultrasonic pre-treatment of sludge before aerobic digestion. Journal of Environmental Sciences 21(3): 279-284.

Seo, H.B., Kim, H.J., Lee, O.K., Ha, J.H., Lee, H.Y., Jung, K.H. (2009): Measurement of ethanol concentration using solvent extraction and dichromate oxidation and its application to bioethanol production process. Journal of industrial Microbiology and Biotechnology 36(2): 285-292.

de Morais, E.G., Moraes, L., de Morais, M.G.,.Costa, J.A.V (2016) Biodiesel and Bioethanol fromMicroalgae. In. Soccol, C. R., Brar, S. K., Faulds, C., Ramos, L. P. (eds.) Green Fuels Technology. Springer International Publishing, pp.359–386.

Aldiguier, A.S., Alfenore, S., Cameleyre, X., Goma, G., Uribelarrea, J.L., Guillouet, S.E., Molina-Jouve, C. (2004): Synergistic temperature and ethanol effect on Saccharomyces cerevisiae dynamic behaviour in ethanol bio-fuel production. Bioprocess and biosystems engineering 26(4): 17-222.

Unal, M.Ü., Chowdhury, G., Şener, A. (2022): Effect of temperature and nitrogen supplementation on bioethanol production from waste bread, watermelon and muskmelon by Saccharomyces cerevisiae. Biofuels 13(4): 395-399.

Lin, Y., Zhang, W., Li, C., Sakakibara, K., Tanaka, S., Kong, H. (2012): Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass and bioenergy 47: 395-401.




How to Cite

Narmatha, R. ., Dhandayuthapani, K., Ranjith Kumar, R., & Shanthi, K. (2024). BIOETHANOL PRODUCTION FROM HYDROLYSATE DERIVED BY ULTRASONIC PRETREATED DEFATTED BIOMASS OF MUNICIPAL WASTEWATER GROWN MUTANT TETRADESMUS DIMORPHUS EMS2. Journal of Applied Biological Sciences, 18(1), 1–13. Retrieved from