IgG IMMUNE RESPONSE AGAINST SALIVARY GLAND PROTEIN EXTRACT OF DENGUE VECTOR Aedes aegypti

Abstract views: 81 / PDF downloads: 163

Authors

Keywords:

Blood feeding, IgG, immunogenic, pathogen transmission, sera

Abstract

The implication of Aedes aegypti (Ae. aegypti) salivary components on the host immune system remains a crucial factor to be revealed for evaluating the risk of dengue infection. The salivary gland of mosquitoes has been known to contain several biological components that facilitate blood-feeding and contribute to successful pathogens transmission. These processes are mediated by the antigenic and immunogenic molecules inside the salivary cocktails. During the blood-feeding, mosquitoes injected the saliva and hosts will develop immune responses as a counter-attack against salivary components. Several studies showed that the evaluation of antibody responses towards arthropod-vector saliva could be a biological indicator to estimate the vector’s exposure. Sensitisation of Ae. aegypti Salivary Gland Protein Extract (SGPE) were used to clarify mosquito feeding’s implication to host humoral immune response (IgG). Enzyme-Linked Immunosorbent Assay (ELISA) was used to analyse IgG quantitatively from sera sample of the murine model, i.e. BALB mice. Results showed that elevated IgG levels were in accordance with the increasing concentration of SGPE as well as longer time of exposure. This result indicated that mice immune response had been modulated by Ae. aegypti salivary components. Therefore, we could assess Ae. aegypti salivates exposure by analysing IgG quantitatively as potential biomarkers for vector bites.

References

Fahri S., Yohan B., Trimarsanto H., Sayono S., Hadisaputro S., Dharmana E., and Syafruddin D., Sasmono R.T. (2013): Molecular Surveilance of Dengue in Semarang, Indonesia Revealed The Ciirculation of An Old Genotype of Dengue Virus Serotype-1. Plos One 7:1-12. https://doi.org/10.1371/journal.pntd.0002354.

Vazeille M., Gaborit P., Mousson L., Girod R., and Failloux A.B. (2016): Competitive Advantage of A Dengue 4 Virus When Co-Infecting The Mosquito Aedes aegypti with A Dengue 1 Virus. BMC Infect Dis 6:318. https://doi.org/10.1186/s12879-016-1666-0.

Conway M.J., Berlin L.R., Andrea T., Alan M.W., William B.K., Erol F., and Colpitts T.M. (2016): Aedes aegypti D7 Saliva Protein Inhibits Dengue Virus Infection. Plos Negl Trop 10:1-19. https://doi.org/10.1371/journal.pntd.0004941.

Mores C.N., Christofferson R.C., and Davidson S.A. (2014): The Role of The Mosquito in A Dengue Human Infection Model. ¬Journal of Infectious Diseases 209:71–78.

Wasinpiyamongkol L., Patramool S., Luplertlop N., Surasobatpattana P., Doucoure S., Mouchet F., Seveno M., Remoue F., Demettre E., Blizard J.P., Jouin P., Biron D.G., Thomas F., and Misse D. (2010): Blood Feeding and Immunogenic Aedes aegypti Saliva Proteins. Proteomics 10:1906–1916. https://doi.org/10.1002/pmic.200900626.

Leitner W.W., Wali T., and Denis A.C.S. (2013): Is Arthropod Saliva The Achilles’ Heel of Vector-Borne Diseases?. Front Immunol 4:255 . https ://doi.org/10.3389/fimmu. 2013.00255.

Wichit S., Ferraris P., Choumet V., and Missé D. (2016): The Effects of Mosquito Saliva on Dengue Virus Infectivity in Humans. Curr Opin Virol 21:139–145. https://doi.org/10.1016/j.coviro.2016.10.001.

Demarta-Gatsi C., Mécheri S., and Paul R.E. (2018): Mosquito Saliva, Skin, Allergy, and The Outcome of Malaria Infection-From Mice to Men. Skin and Arthropod Vector : 85-96. https://doi.org/10.1016/B978-0-12-811436-0.00004-6.

Fontaine A., Diouf I., Bakkali N., Misse D., Pages F., Fusai T., Rogier C., and Almeras L. (2011): Implication of Haematophagous Arthropod Salivary Proteins in Host-Vector Interactions. Parasit & Vector 4:187. https://doi.org/10.1186/1756-3305-4-187.

Juhn J., Naeem-Ullah U., Guedes B.A.M., Majid A., Coleman J., Pimenta P.F.P., Akram W., James A.A., and Marinotti O. (2011): Spatial Mapping of Gene Expression in The Salivary Glands of The Dengue Vector Mosquito, Aedes aegypti. Parasites & Vectors 4:1. https://doi.org/10.1186/1756-3305-4-1.

Prasad A., Kumar D., and Parveen A. (2016): Morphological Analysis of Salivary Gland in Three Important Mosquito Genera (Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti). Int J Curr Res Aca Rev 4:328–334. https://doi.org/10.20546/ijcrar. 2016.402.035.

Almeras L., Fontaine A., Belghazi M., Bourdon S., Boucomont-Chapeaublanc E., Orldani-Pradines E., Baragatti M., Corre-Catelin N., Reiter P., Pradines B., Fusai T., and Rogier C. (2010): Salivary Gland Protein Repertoire from Aedes aegypti Mosquitoes. Vector-borne and Zoonotic Diseases 10 :391-402. https://doi.org/10.1089/vbz.2009.0042.

Ribeiro J.M.C., Mans B.J., and Arca B. (2010): An Insight Into The Sialome of Blood-Feeding Nematocera.Insect Biochem Mol Biol 40:767-784. https://doi.org/10.1016/j.ibmb.2010.08.002.

King J.G., Vernick K.D., and Hillyer J.F. (2011): Members of The Salivary Gland Surface Protein (SGS) Family Are Major Immunogenic Components of Mosquito Saliva. J Biol Chem 286:40824-40834. https://doi.org/10.1074/jbc.M111.280552.

Jariyapan N., Roytrakul S., Paemanee A., Junkumi A., Saeung A., Thongsahun S., Sor-suwan S., Phattanawiboon B., Poovorawan Y., and Choochote W. (2012): Proteomic Analysis of Salivary Glands of Female Anopheles barbirostris Species A2 (Diptera: Culicidae) by Two-Dimensional Gel Electrophoresis and Mass Spectrometry. Parasitol Res 111:1239–1249. https://doi.org/10.1007/s00436-012-2958-y.

Ribeiro J.M.C., Martin-Martin I., Arcá B., and Calvo E. A. (2016): Deep Insight Into The Sialome of Male and Female Aedes aegypti Mosquitoes.PLoS ONE 11. https://doi.org/10.1371/journal.pone.0151400.

Coutinho-Abreu I.V., Guimarães-Costa A.B., SN and Valenzuela J.G. (2015): Impact of Insect Salivary Proteins in Blood Feeding, Host Immunity, Disease, and in The Development of Biomarkers for Vector Exposure.Curr Opin Insect Sci 10:98–103. https://doi.org/10.1016/j.cois.2015.04.104.

Guabiraba R. and Ryffel B. (2014): Dengue Virus Infection: Current Concepts in Immune Mechanisms and Lessons from Murine Models.Immunology 141:143–156. http://doi.org/10.1111/imm.12188.

Hillyer J.F. (2010): Mosquito Immunity in Invertebrate Immunity.Austin: Landes Bioscience: 218-238.

Quinnell R.J., Soremekun S., Bates P.A., Rogers M.E., Garcez L.M., and Courtenay O. (2018): Antibody Response to Sand Fly Saliva Is A Marker of Transmission Intensity But Not Disease Progression in Dogs Naturally Infected with Leishmania Infantum. Parasites and Vectors 11:7. https://doi.org/10.1186/s13071-017-2587-5.

Ayukekbong J.A., Oyero O.G., Nnukwu S.E., Mesumbe H.N., and Fobisong C.N. (2017): Value of Routine Dengue Diagnosis in Endemic Countries. World Journal of Virology 6:9-16. https://doi.org/10.5501/wjv.v6.i1.9.

Ly M.H.P., Moi M.L., Vu T.B.H., Tun M.M.N., Saunders T., Nguyen C.N., Nguyen A.K.T., Nguyen H.M., Dao T.H., Pham D.Q., Nguyen T.T.T., Le T.Q.M., Hasebe F., and Morita K. (2018): Dengue Virus Infection-Enhancement Activity in Neutralizing Antibodies of Healthy Adults Before Dengue Season As Determined by Using Fcγr-Expressing Cells. BMC Infectious Diseases 18:31. https://doi.org/10.1186/s12879-017-2894-7.

Cao-Lormeau V. (2009): Dengue Viruses Binding Proteins from Aedes aegypti and Aedes Polynesiensis Salivary Glands. Virology Journal 6: 1-4. https://doi.org/10.1186/1743-422X-6-35.

Nouroozi, R.V., Noroozi, M.V., Ahmadizadeh, M. 2015. Determination of Protein Concentration Using Bradford Microplate Protein Quantification Assay.International Electric Jpurnal of Medicine. 4(1):11-17. https://doi.org/10.31661/iejm158.

Singh Kushwah R. and Jain J. (2015): Co-Habitation and Concurrent Infection of Dengue and Chikungunya Viruses in Aedes Aegypti Field Populations From India.J Trop Dis 4:194. https://doi.org/10.4172/2329-891X.1000194.

Upshur I.F., Bose E.A., Hart C., and Lahondère C. (2019): Temperature and Sugar Feeding Effects on The Activity of A Laboratory Strain of Aedes aegypti.Insects 10:E347. https://doi.org/10.3390/insects10100347.

Isoe J., Koch L.E., Isoe Y.E., Rascón A.A., Brown H.E., Massani B.B., and Miesfeld R.L. (2019): Identification and Characterization of A Mosquito-Specific Eggshell Organizing Factor in Aedes aegypti Mosquitoes.PLoS Biol 17:e3000068. https://doi.org/10.1371/journal.pbio.3000068.

Andrew J. and Bar A. (2013): Morphology and Morphometry of Aedes aegypti Adult Mosquito. Annual Review & Research in Biology 3:52-69.

Harapan H., Michie A., Mudatsir M., Sasmono R.T., Imrie A. (2019): Epidemiology of Dengue Hemorrhagic Fever in Indonesia: Analysis of Five Decades Data from The National Disease Surveillance.BMC Research Notes 12:350. https://doi.org/10.1186 /s13104-019-4379-9.

Soegijanto S., Mulyanto K.C., Churotin S., Kotaki T., Kamioka M.N., Konichi E., Yamanaka A., and Wikanesthi D. (2013): Sero-Epidemiology of Dengue Virus Infection in Cities of Indonesia.Indonesian Journal of Tropical and Infectious Disease 4:26-29. https://doi.org/10.20473/ijtid.v4i4.229.

Palosuo K., Brummer-Korvenkontio H., Mikkola J., Sahi T., and Reunala T. (1997): Seasonal Increase in Human IgE and IgG4 Antisaliva Antibodies to Aedes Mosquito Bites.International Archives of Allergy and Immunology 114:367–372. https://doi.org/10.1159/000237696.

Waitayakul A., Somsri S., Sattabongkot J., Looareesuwan S., Cui L., and Udomsangpetch R. (2006): Natural Human Humoral Response to SG Proteins of Anopheles Mosquitoes in Thailand. Acta Tropica 98:66-73. https://doi.org/10.1016/j.actatropica.2006.02.004.

Drame P.M., Poinsignon A., Besnard P., Mire J.L., Dos-Santos M.A., Sow C.S., Cornelie S., Foumane V., Toto J.C., Sembene M., Boulanger D., Simondon F., Fortes F., Carnevale P., and Remoue F. (2010): Human Antibody Response to Anopheles gambiae Saliva: An Immuno-Epidemiological Biomarker to Evaluate The Efficacy Insecticide Treated Nets in Malaria Vector Control.Am. J. Trop. Med. Hyg 83:115-121. https://doi.org/10.4269/ajtmh.2010.09-0684.

Berlin L.R., Jenny C.C., Lucio D.C., Rebecca C.C., Daniel M.C., Dawn M.W., Michael K.M., Daisy C., and Christopher N.M. (2013): Use of Anti-Aedes aegypti Salivary Extract Antibody Concentration to Correlate Risk of Vector Exposure and Dengue Transmission Risk in Columbia. Plos One 8:1-7. https://doi.org/10.1371/journal.pone.0081211.

Rizzo C., Ronca R, Fiorentino G., Verra F., Mangano V., Posingnon A., Sirima S.B., Nebie I., Lombardo F., Remoue F., Coluzzi M., Petrarca V., Modiano D., and Arca B. (2011): Humoral Response to The Anopheles gambiae Salivary Protein GSG6: A Serological Indicator of Exposure to Afrotropical Malaria Vectors.PloS ONE 6:1-9. https://doi.org/10.1371/journal.pone.0017980.

Maggini S., Pierre A., and Calder P.C. (2018): Immune Function and Micronutrient Requirements Change Over The Life Course.Nutrients 10:1531. https://doi.org/10.3390/nu10101531.

Scott-taylor T.H., Axinia S., Amin S., and Pettengell R. (2018): Immunoglobulin G; Structure and Functional Implications of Different Subclass Modifications in Initiation and Resolution of Allergy. Immun Inflam Dis 6:13–33. https://doi.org/10.1002/iid3.192.

Taneja V. (2018): Sex Hormones Determine Immune Response. Front Immunol 9:1931. https://doi.org/10.3389/fimmu.2018.01931.

Lissauer D., Eldershaw S.A., Inman C.F., Coomarasamy A., Moss P.A.H., and Kilby A.D. (2015): Progesterone Promote Maternal-Fetal Tolerance by Reducing Human Maternal T-Cell Polyfunctionality and Inducing A Specific Cytokine Profile.Eur. J. Immunol 45:2858-2872. https://doi.org/10.1002/eji.201445404.

Doucoure S., Mouchet F., Cournil A., Goff G., Cornelie S., Roca Y., Walter A., Herve J.P., Misse D., Favier F., Gasque P., and Remoue F. (2012): Human Antibody Response to Aedes aegypti Saliva in An Urban in Bolivia: A New Biomarker of Exposure to Dengue Vector Bites. Am. J. Trop, Med. Hyg 87:504-510. https://doi.org/10.1155/2014/746509.

Hoffman W., Lakkis F.G., and Chalasani G. (2016): B Cells, Antibodies, and More. Clin J Am Soc Nephrol 11:137–154. https://doi.org/10.2215/CJN.09430915.

Sivangala R. and Sumanlatha G. (2015): Cytokines That Mediate and Regulate Immune Responses. Innovative Immunology. India: Austin Publishing; P. 1–26.

Moormann A.M. and Stewart V.A. (2014): The Hunt For Protective Correlates of Immunity to Plasmodium Falciparum Malaria.BMC Medicine 12:134.

Oktarianti R., Senjarini K., Fatchiyah, and Aulani’am A. (2015): Individual Human Sera Response Against Protein Extracts from Salivary Gland of Ae. aegypti. The 3rd ICBS-2013 2:86-91. https://doi.org/10.18502/kls.v2i1.121.

Uno N. and Ross T.M. (2018): Dengue Virus and The Host Innate Immune Response.Emerg Microbes Infect 7:167. https://doi.org/10.1038/s41426-018-0168-0.

Downloads

Published

2022-09-28

How to Cite

Wathon, S., Purwati, W., Oktarianti, R., & Senjarini, K. (2022). IgG IMMUNE RESPONSE AGAINST SALIVARY GLAND PROTEIN EXTRACT OF DENGUE VECTOR Aedes aegypti. Journal of Applied Biological Sciences, 16(3), 483–492. Retrieved from https://jabsonline.org/index.php/jabs/article/view/907

Issue

Section

Articles