DICTYOTA DICHOTOMA (PHAEOPHYCEAE) METHANOLIC EXTRACTS EXHIBIT ANTITUMORAL EFFECTS ON BREAST CANCER CELLS AND INDUCE OSTEOBLASTS DIFFERENTIATION
DOI:
https://doi.org/10.71336/jabs.972Keywords:
Algal extract, cell adhesion, cell migration, cytotoxicity, osteoblastogenesisAbstract
There is a growing interest in macroalgae as natural products with antioxidant and anticancer activity. In this work, we studied the anti-tumoral effect of an algal extract (AE) derived from the marine alga Dictyota dichotoma on human breast cancer cells (MCF-7). We also evaluated the cytotoxic effects on non-tumorigenic cells and the effects on ostoblastogenesis in vitro. We found that the AE contains high levels of polyphenols and anti-oxidant activity measured by DPPH and Folin-Ciocalteu methods, respectively. Using trypan blue and MTS assays we demonstrated a significant inhibition of MCF-7 cell proliferation and viability. The changes in protein phosphorylation levels were examined through Western blot analysis, finding a decrease of phosphorylated AKT (Ser473) and its target molecule BAD (Ser136). In addition, AE inhibits cell migration determined through the wound healing assay and decreases cellular adhesion at all concentrations probed. Interestingly, AE does not affect the number and morphology of normal osteoblastic human cells, indicating its selectivity. Moreover, using colorimetric methods, we found that low doses of AE increase the production of osteoblastogenesis markers. These findings indicate that D. dichotoma is a valuable source of bioactive compounds for its regulatory effects on processes involved in metastasis and healthy effects in osteoblasts.
References
Alves. C., Silva, J., Pinteus, S., Gaspar, H., Alpoim, M.C., Botana, L.M. et al. (2018): From Marine Origin to Therapeutics: The Antitumor Potential of Marine Algae-Derived Compounds. Front. Pharmacol. 9:777. DOI: https://doi.org/10.3389/fphar.2018.00777
Nguyen, M.H., Jung, W.K. and Kim, S.K. (2011): Marine Algae Possess Therapeutic Potential for Ca-Mineralization via Osteoblastic Differentiation. Advances in Food and Nutrition Research 64: 429-441. doi: 10.1016/B978-0-12-387669-0.00033-8. DOI: https://doi.org/10.1016/B978-0-12-387669-0.00033-8
Pangestuti, R. and Kim, S.K. (2011): Biological activities and health benefit effects of natural pigments derived from marine algae. Journal of Functional Foods 3: 255–266. https://doi.org/10.1016/j.jff.2011.07.001 DOI: https://doi.org/10.1016/j.jff.2011.07.001
Vieira, C., Gaubert, J., De Clerck, O., Payri, C., Culioli, G. and Thomas, O. (2015): Biological activities associated to the chemodiversity of the brown algae belonging to g Hadji P. Cancer treatment-induced bone loss in women with breast cancer. Bonekey Rep. 4:692. doi: 10.1038/bonekey.2015.60 DOI: https://doi.org/10.1007/s11101-015-9445-x
Kim, S.K. and Karagozlu, M.Z. (2011): Marine algae: Natural product source for gastrointestinal cancer treatment. Adv Food Nutr Res 64: 225–233. DOI: 10.1016/b978-0-12-387669-0.00017-x. DOI: https://doi.org/10.1016/B978-0-12-387669-0.00017-X
Kim, S.K. and Ta, Q.V. (2011): Potential beneficial effects of marine algal sterols on human health. Adv Food Nutr Res 64: 191–198. doi: 10.1016/B978-0-12-387669-0.00014-4. DOI: https://doi.org/10.1016/B978-0-12-387669-0.00014-4
Moghadamtousi, S.Z., Karimian, H., Khanabdali, R., Razavi, M., Firoozinia, M., Zandi, K. et al. (2014): Anticancer and Antitumor Potential of Fucoidan and Fucoxanthin, Two Main Metabolites Isolated from Brown Algae. Scientific World Journal. https://doi.org/10.1155/2014/768323 DOI: https://doi.org/10.1155/2014/768323
Kolesnikova, S.A., Kalinovsky, A.I., Fedorov, S.N., Shubina, L.K. and Stonik, V.A. (2006): Diterpenes from the Far-eastern brown alga Dictyota dichotoma, Phytochemistry 67: (19) 2115-2119. doi: 10.1016/j.phytochem.2006.05.041. DOI: https://doi.org/10.1016/j.phytochem.2006.05.041
Siamopoulou, P., Bimplakis, A., Iliopoulou, D., Vagias, C., Cos, P., Berghe, D.V. et al. (2004): Diterpenes from the brown algae Dictyota dichotoma and Dictyota linearis. Phytochemistry 65: (14) 2025- 2030. doi: 10.1016/j.phytochem.2004.06.018.
Nitulescu, G.M., Van De Venter, M., Nitulescu, G., Ungurianu, A., Juzenas, P., et al. (2018): The Akt pathway in oncology therapy and beyond (Review). International Journal of Oncology 53(6): 2319-2331. https://doi.org/10.3892/ijo.2018.4597 DOI: https://doi.org/10.3892/ijo.2018.4597
Manning, B.D. and Toker, A. (2017): AKT/PKB Signaling: Navigating the Network. Cell 169: 381-405. https://doi.org/10.1016/j.cell.2017.04.001 DOI: https://doi.org/10.1016/j.cell.2017.04.001
Tang, B., Tang, F., Wang, Z., Qi, G., Liang, X., et al. (2016): Upregulation of Akt/NF-κB-regulated inflammation and Akt/Bad-related apoptosis signaling pathway involved in hepatic carcinoma process: suppression by carnosic acid nanoparticle. International Journal of Nanomedicine, 11: 6401–6420. https://doi.org/10.2147/IJN.S101285 DOI: https://doi.org/10.2147/IJN.S101285
Hayakawa, J., Ohmichi, M., Kurachi, H., Kanda, Y., Hisamoto, K., et al. (2000): Inhibition of BAD Phosphorylation Either at Serine 112 via Extracellular Signal regulated Protein Kinase Cascade or at Serine 136 via Akt Cascade Sensitizes Human Ovarian Cancer Cells to Cisplatin. Cancer Research 60: 5988–5994.
Browne, A., Kubasch, M.L., Göbel, A., Hadji, P., Chen, D., Rauner, M. et al. (2017): Concurrent antitumor and bone-protective effects of everolimus in osteotropic breast cancer. Breast Cancer Research 19:92. https://doi.org/10.1186/s13058-017-0885-7 DOI: https://doi.org/10.1186/s13058-017-0885-7
Xiong, Z., Deng, G., Huang, X., Li, X., Xie, X., Wang, J. et al. (2018): Bone metastasis pattern in initial metastatic breast cancer: a population-based study. Cancer Manag Res. 10:287-295. doi: 10.2147/CMAR.S155524. DOI: https://doi.org/10.2147/CMAR.S155524
Blair, H.C., Larrouture, Q.C., Li, Y., Lin, H., Beer-Stoltz, D., Liu, L. et al. (2017): Osteoblast Differentiation and Bone Matrix Formation In Vivo and In Vitro. Tissue Eng Part B Rev. 23(3): 268–280. doi: 10.1089/ten.TEB.2016.0454. DOI: https://doi.org/10.1089/ten.teb.2016.0454
Carson, M.A. and Clarke, S.A. (2018): Bioactive Compounds from Marine Organisms: Potential for Bone Growth and Healing. Mar Drugs 16 (9): 340. Doi: 10.3390/md16090340. DOI: https://doi.org/10.3390/md16090340
Kim, J.A., Karadeniz, F., Ahn, B.N., Kwon, S.M., Mun, O.J., Bae, M.J. et al. (2016): Bioactive quinone derivatives from the marine brown alga Sargassum thunbergii induce anti-adipogenic and pro-osteoblastogenic activities. J Sci Food Agric. 96(3):783-790. https://doi.org/10.1002/jsfa.7148 DOI: https://doi.org/10.1002/jsfa.7148
Gauna, M.C., Cáceres, E.J. and Parodi, E.R. (2013): Temporal variations of vegetative features, sex ratios and reproductive phenology in a Dictyota dichotoma (Dictyotales, Phaeophyceae) population of Argentina. Helgoland Mar Res. 67:721–732. https://doi.org/10.1007/s10152-013-0357-0 DOI: https://doi.org/10.1007/s10152-013-0357-0
Gauna, M.C., Cáceres, E.J. and Parodi, E.R. (2015). Spatial and temporal variability in algal epiphytes on Patagonian Dictyota dichotoma (Dictyotales, Phaeophyceae). Aquat Bot. 120:338–345. DOI: https://doi.org/10.1016/j.aquabot.2014.10.003
Lopes-Filho, E.A., Salgueiroa, F., Nascimento, S.M., Gauna, M.C., Parodi, E.R. and De Paula, J.C. (2017): Molecular evidence of the presence of Dictyota dichotoma (Dictyotales: Phaeophyceae) in Argentina based on sequences from mtDNA and cpDNA and a discussion of its possible origin. New Zeal J Bot 55:293-305. DOI: https://doi.org/10.1080/0028825X.2017.1326387
Lezcano, V., Fernández, C., Parodi, E. and Morelli, S. (2018): Antitumoral and antioxidant activity of the freshwater macroalga Cladophora surera. J Appl Phycol 30: 2913-2921. DOI:10.1007/s10811-018-1422-5 DOI: https://doi.org/10.1007/s10811-018-1422-5
Singleton, V.L., Orthofer, R. and Lamuela-Raventós, R.M. (1999): Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology 299:152-178. https://doi.org/10.1016/S0076-6879(99)99017-1. DOI: https://doi.org/10.1016/S0076-6879(99)99017-1
Chaillou, L.L. and Nazareno, M.A. (2006): New method to determine antioxidant activity of polyphenols. J Agric Food Chem 54(22):8397-8402. doi: 10.1021/jf061729f. PMID: 17061812. DOI: https://doi.org/10.1021/jf061729f
Bradford, M.M. (1976): A rapid and sensitive method for quantification of microgram quantities of proteins utilizing the principle of protein binding. Anal Biochem 72: 248-254. doi: 10.1006/abio.1976.9999. DOI: https://doi.org/10.1006/abio.1976.9999
Lezcano, V., Gentili, C. and Russo de Boland, A. (2013): Role of PTHrP in human intestinal Caco-2 cell response to oxidative stress, BBA - Molecular Cell Research. 1833: 2834–2843. doi: 10.1016/j.bbamcr.2013.06.029. DOI: https://doi.org/10.1016/j.bbamcr.2013.06.029
Ryu, B.M., Li, Y., Qian, Z.J., Kim, M.M. and Kim, S.K. (2009): Differentiation of human osteosarcoma cells by isolated phlorotannins is subtly linked to COX-2, iNOS, MMPs, MAPK signaling: Implication for chronic articular disease. Che. Biol Interact 179: 192–201. doi: 10.1016/j.cbi.2009.01.006. PMID: 19330880. DOI: https://doi.org/10.1016/j.cbi.2009.01.006
Soltani, S., Saadatmand, S., Khavarinejad, R. and Nejadsattari T. (2011): Antioxidant and antibacterial activities of Cladophora glomerata (L.) Kütz. in Caspian Sea Coast, Iran. Afr J Biotechnol 10:7684-7689.
Chaouche, T.M., Haddouchi, F., Ksouri, R. and Atik-Bekkara, F. (2014): Evaluation of antioxidant activity of hydromethanolic extracts of some medicinal species from South Algeria. J Chin Med Assoc 77:302-307. doi: 10.1016/j.jcma.2014.01.009. DOI: https://doi.org/10.1016/j.jcma.2014.01.009
Zubia, M., Robledo, D. and Freile-Pelegrin, Y. (2007): Antioxidant activities in tropical marine macroalgae from the Yucatan Peninsula Mexico. Journal of Applied Phycology 19: 449–458. DOI:10.1007/s10811-006-9152-5 DOI: https://doi.org/10.1007/s10811-006-9152-5
Se-Kwon, K. (2011): Handbook of Marine Macroalgae: Biotechnology and Applied Phycology (1st edn). John Wiley & Sons.
Funahashi, H., Imai, T., Mase, T., Sekiya, M., Yokoi, K., Hayashi, H. et al. (2001): Seaweed prevents breast cancer? Jpn J Cancer Res 92: 483–487. doi: 10.1111/j.1349-7006.2001.tb01119.x. DOI: https://doi.org/10.1111/j.1349-7006.2001.tb01119.x
Namvar, F., Baharara, J. and Mahdi, A. (2014): Antioxidant and anticancer activities of selected Persian Gulf algae. Indian J Clin Biochem 29: 13– 20. doi: 10.1007/s12291-013-0313-4. DOI: https://doi.org/10.1007/s12291-013-0313-4
Zandi, K. (2010): In vitro antitumor activity of Gracilaria corticata (a red alga) against Jurkat and molt-4 human cancer cell lines. Afr J Biotechnol 9: 6787–6790. DOI: 10.5897/AJB10.602
Erfani, N., Nazemosadat, Z. and Moein, M. (2015): Cytotoxic activity of ten algae from the Persian Gulf and Oman Sea on human breast cancer cell lines: MDA-MB-231, MCF-7 and T-47D. Phcog Res 7:133-137. doi: 10.4103/0974-8490.150539. DOI: https://doi.org/10.4103/0974-8490.150539
Taskin, E., Caki, Z., Ozturk, M. and Taskin, E. (2010): Assessment of in vitro antitumoral and antimicrobial activities of marine algae harvested from the eastern Mediterranean Sea. Afr J Biotechnol 9 (27) 4272-4277. DOI: 10.5897/AJB10.255
Morya, V.K., Kim, J. and Kim, E. (2012): Algal fucoidan: structural and size‐dependent bioactivities and their perspectives. Applied Microbiology and Biotechnology 93: 71‐82. doi: 10.1007/s00253-011-3666-8. DOI: https://doi.org/10.1007/s00253-011-3666-8
Baliano, A.P., Pimentel, E., Buzin, A.R., Vieira, T.Z., Romão, W., Tose, L.V. et al. (2016): Brown seaweed Padina gymnospora is a prominent natural wound-care product. Brazilian Journal of Pharmacognosy 26: 714-719. https://doi.org/10.1016/j.bjp.2016.07.003 DOI: https://doi.org/10.1016/j.bjp.2016.07.003
Tang Jing Li, X. and Xin Meiyu, X.G. (2006): A New Marine-Derived Sulfated Polysaccharide from Brown Alga Suppresses Tumor Metastasis Both in Vitro and in Vivo. Cancer Biology & Therapy 5: 1474-1480. https://doi.org/10.4161/cbt.5.11.3278 DOI: https://doi.org/10.4161/cbt.5.11.3278
Blume-Jensen, P., Janknecht, R. and Hunter, T. (1998): The Kit receptor promotes cell survival via activation of PI 3-kinase and subsequent Akt-mediated phosphorylation of Bad on Ser136. Current Biology 8 (13) 779-785. doi: 10.1016/s0960-9822(98)70302-1. DOI: https://doi.org/10.1016/S0960-9822(98)70302-1
Cho, Y.S., Jung, W.K., Kim, J.A., Choi, I.W. and Kim, S.K. (2009): Beneficial effects of fucoidan on osteoblastic MG-63 cell differentiation. Food Chem 116: 990–994. https://doi.org/10.1007/s10068-015-0091-2. DOI: https://doi.org/10.1016/j.foodchem.2009.03.051
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Applied Biological Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.