The effect of different solvent selection on the antioxidant capacity and cytotoxicity of Nigella sativa extracts

Authors

DOI:

https://doi.org/10.71336/jabs.1467

Keywords:

Nigella sativa, Cytotoxicity, Antioxidant, Solvent selection, Extraction

Abstract

Nigella sativa (N. sativa) seed is used for treatment as well as food use. In the study, N. sativa seed was extracted using methanol (ME), water (SE), vinegar (SiE) and total phenolic/flavonoid content, DPPH radical scavenging activity and effects on human skin cell line (HDF) and human melanoma cell line (451-Lu) were determined. According to the findings, total phenolic substance amount in N. sativa extract prepared with methanol (ME) was determined as 72.08 mg GAE/g extract; total flavonoid substance amount as 192.30 mg QE/g extract; DPPH activity as 85.17%. In cytotoxic assays, selective toxicity of the extracts was observed. No significant toxic effect was detected in the HDF cell line, while suppression of cell viability was noted in the 451-LU melanoma cell line. These findings suggest that the extracts may have the potential to selectively target cancer cells without damaging healthy cells and are promising as potential anticancer agents.

References

Baydar, H., Karadoğan, T., Çarkçı, K. (2001): Isparta bölgesinde kültüre alınan aromatik bitkilerin drog ve uçucu yağ verimlerinin belirlenmesi. [Determination of drug and essential oil yields of aromatic plants cultivated in the Isparta region]. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(1):60–71.

Karik, Ü., Öztürk, M. (2009): Türkiye diş ticaretinde tibbi ve aromatik bitkiler [Medicinal and aromatic plants in turkish foreign trade]. Bahçe. Turkey, 38(1):21-31.

Bayram, E., Kırıcı, S., Tansı, S., Yılmaz, G., Kızıl, Arabacı, O. Kızıl, S., & Telci, İ. (2010): Tibbi ve aromatik bitkiler üretiminin artırılması olanakları [Possibilities of increasing the production of medicinal and aromatic plants]. TMMOB Ziraat Mühendisleri Odasi, Ziraat Mühendisligi VII. Teknik Kongresi, Turkey, 11,15.

Turhan B. (1999): Türkiye’de bitkiler ile tedavi: Geçmişte ve bugün [Treatment with plants in Turkey: Past and present]. Nobel Kitapevleri, Turkey.

Ceylan A. (1983): Tıbbi bitkiler I (I. Genel Bölüm) [Medicinal Plants]. Ege Üniversitesi Ziraat Fakültesi Yayınları. Turkey, 312.

Seçmen Ö., Gemici Y., Göktürk G., Bekat L., Leblebici E. (2000): Tohumlu bitkiler sistematiği [Systematics of seed plants]. Ege Üniversitesi Fen Fakültesi Kitaplar Serisi, Turkey;116, 394.

Türközü D., Yıldırım B. (2007): Van ekolojik koşullarında farklı azot dozlarının ve ekim zamanlarının çörek otu (Nigella sativa L)’nda verim, verim unsurları ve kalite üzerine etkileri [Effects of different nitrogen doses and planting times on yield, yield components and quality of black cumin (Nigella sativa L) in Van ecological conditions]. Türkiye VII. Tarla Bitkileri Kongresi, Turkey, 2007:839-842.

Ceylan A. (1997): Tıbbi bitkiler II: (uçucu yağ bitkileri) [Medicinal plants II: (essential oil plants)]. Ege Üniversitesi Ziraat Fakültesi. Turkey.

Kılıç C., Arabacı O. N. (2016): Çörek otu (Nigella sativa L)’nda farklı ekim zamanı ve tohumluk miktarının verim ve kaliteye etkisi [Effect of different sowing times and seed quantities on yield and quality in black cumin (Nigella sativa L)]. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi. Turkey, 13(2):49-56. DOI: https://doi.org/10.25308/aduziraat.293425

Güzelsoy P., Aydın S., Başaran A. (2018): Potential effects of thymoquinone the active constituent of black seed (Nigella sativa L.) on human health. Literatür Eczacılık Bilimleri Dergisi. Turkey, (7)2. DOI: https://doi.org/10.5336/pharmsci.2018-59816

Nakilcioğlu E., Ötleş S. (2014): Basınçlı çözgen ekstraksiyonu ve gıda sanayindeki uygulamaları [Pressurized solvent extraction and its applications in the food industry]. Akademik gıda. Turkey, 12(2):88-94.

Benthin B., Danz B., Hamburger M. (1999): Pressurized liquid extraction of medicinal plants. Journal of Chromatography A, 837(1-2): 211-219. https://doi.org/10.1016/S0021-9673(99)00071-0. DOI: https://doi.org/10.1016/S0021-9673(99)00071-0

Moussouni, L., Benhanifia, M., Ayad, A. (2018): Marrubium vulgare (karaderme) yapraklarının sulu ve etanolik ekstraktlarının sığır sındırım strongilozuna karşı in-vitro antelmintik etkileri [In vitro anthelmintic effects of aqueous and ethanolic extracts of marrubium vulgare leaves against bovine digestive strongylosis.]. Türkiye Parazitoloji Dergisi , 42(4): 262.

Hajji, M., Jarraya, R., Lassoued, I., Masmoudi, O., Damak, M., Nasri, M. (2010): GC/MS and LC/MS analysis, and antioxidant and antimicrobial activities of various solvent extracts from Mirabilis jalapa tubers. Process Biochemistry, 45(9):1486-1493. https://doi.org/10.1016/j.procbio.2010.05.027. DOI: https://doi.org/10.1016/j.procbio.2010.05.027

Zhishen, J., Mengcheng, T., Jianming, W. (1999): The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4):555-559. https://doi.org/10.1016/S0308-8146(98)00102-2. DOI: https://doi.org/10.1016/S0308-8146(98)00102-2

Hatano, T., Kagawa, H., Yasuhara, T., Okuda, T. (1988): Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chemical and pharmaceutical bulletin, 36(6): 2090-2097. https://doi.org/10.1248/cpb.36.2090. DOI: https://doi.org/10.1248/cpb.36.2090

Balkis, E., Polat, M., Kaya, B. (2025): Comparison of antimicrobial, anticancer and antioxidant properties of Fe, Cu, Ag nanoparticles synthesized from Salvia officinalis plant. Pakistan Journal Botany 57(2):501-514. http://dx.doi.org/10.30848/PJB2025-2(34). DOI: https://doi.org/10.30848/PJB2025-2(34)

Faydaoğlu, E., Sürücüoğlu, M. (2013): Tibbi ve aromatik bitkilerin antimikrobiyal, antioksidan aktiviteleri ve kullanim olanaklari [Antimicrobial and antioxidant activities and usage possibilities of medicinal and aromatic plants]. Erzincan University Journal of Science and Technology. Turkey, 6(2):233-265.

Bulca, S. (2014): Çörek otunun bileşenleri ve bu yağın ve diğer bazı uçucu yağların antioksidan olarak gıda teknolojisinde kullanımı [Components of black cumin seed and the use of this oil and some other essential oils as antioxidants in food technology]. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi. Turkey, 11(2):29-36.

Moure, A., Cruz, J. M., Franco, D., Domı́nguez, J. M., Sineiro, J., Domı́nguez, H., Núñez MJ., Parajó, JC. (2001): Natural antioxidants from residual sources. Food chemistry, 72(2):145-171. https://doi.org/10.1016/S0308-8146(00)00223-5. DOI: https://doi.org/10.1016/S0308-8146(00)00223-5

Sultan, M. T., Butt, MS., Anjum, F. M., Jamil, A., Akhtar, S., Nasir, M. (2009): Nutritional profile of indigenous cultivar of black cumin seeds and antioxidant potential of its fixed and essential oil. Pakistan Journal Botany, 41(3):1321-1330.

Lutterodt, H., Luther, M., Slavin, M., Yin, J. J., Parry, J., Gao, J. M., Yu, L. L. (2010): Fatty acid profile, thymoquinone content, oxidative stability, and antioxidant properties of cold-pressed black cumin seed oils. LWT-Food Science and Technology, 43(9):1409-1413. https://doi.org/10.1016/j.lwt.2010.04.009. DOI: https://doi.org/10.1016/j.lwt.2010.04.009

Bourgou, S., Pichette, A., Marzouk, B., Legault, J. (2012): Antioxidant, anti-inflammatory, anticancer and antibacterial activities of extracts from Nigella sativa (black cumin) plant parts. Journal of Food Biochemistry, 36(5):539-546. https://doi.org/10.1111/j.1745-4514.2011.00567.x. DOI: https://doi.org/10.1111/j.1745-4514.2011.00567.x

Ilhan, A., Gurel, A., Armutcu, F., Kamisli, S., Iraz, M. (2005): Antiepileptogenic and antioxidant effects of Nigella sativa oil against pentylenetetrazol-induced kindling in mice. Neuropharmacology, 49(4):456-464. https://doi.org/10.1016/j.neuropharm.2005.04.004. DOI: https://doi.org/10.1016/j.neuropharm.2005.04.004

Kar Y., Şen N., Tekeli Y. (2007): Samsun yöresinde ve Mısır ülkesinde yetiştirilen çörek otu (Nigella sativa L.) tohumlarının antioksidan aktivite yönünden incelenmesi [Investigation of antioxidant activity of black cumin (Nigella sativa L.) seeds grown in Samsun region and Egypt country]. Süleyman Demirel University Faculty of Arts and Science Journal of Science. Turkey, 2(2):197-203.

Singh, G., Marimuthu, P., de Heluani, C. S., Catalan, C. (2005): Chemical constituents and antimicrobial and antioxidant potentials of essential oil and acetone extract of Nigella sativa seeds. Journal of the Science of Food and Agriculture, 85(13):2297-2306. https://doi.org/10.1002/jsfa.2255. DOI: https://doi.org/10.1002/jsfa.2255

Buran, A., Topdemir, A., Öztürk, R. (2022): Üzüm çekirdeği, çörek otu ve keten tohumu tozlarının antioksidan, fenolik ve flavonoid madde miktarları [Antioxidant, phenolic and flavonoid substance amounts of grape seed, black cumin and flax seed powders]. International Conference on Innovative Academic Studies. pp. 10-13.

Ndhlala, A. R., Moyo, M., Van Staden, J. (2010): Natural antioxidants: fascinating or mythical biomolecules?. Molecules, 15(10):6905-6930. https://doi.org/10.3390/molecules15106905. DOI: https://doi.org/10.3390/molecules15106905

Ashraf, M., Ali, Q., Iqbal, Z. (2006): Effect of nitrogen application rate on the content and composition of oil, essential oil and minerals in black cumin (Nigella sativa L.) seeds. Journal of the Science of Food and Agriculture, 86(6):871-876. DOI: https://doi.org/10.1002/jsfa.2426

Alexa, V. T., Galuscan, A., Soica, C. M., Cozma, A., Coricovac, D., Borcan, F., ... & Jumanca, D. (2022): In vitro assessment of the cytotoxic and antiproliferative profile of natural preparations containing bergamot, orange and clove essential oils. Molecules, 27(3):990. https://doi.org/10.3390/molecules27030990. DOI: https://doi.org/10.3390/molecules27030990

Li, M., Tang, D., Yang, T., Qian, D., Xu, R. (2022): Apoptosis triggering, an important way for natural products from herbal medicines to treat pancreatic cancers. Frontiers in pharmacology, 12:796300. https://doi.org/10.3389/fphar.2021.796300. DOI: https://doi.org/10.3389/fphar.2021.796300

Pilut, C. N., Manea, A., Macasoi, I., Dobrescu, A., Georgescu, D., Buzatu, R., ... & Malița, D. (2022): Comparative evaluation of the potential antitumor of Helleborus purpurascens in skin and breast cancer. Plants, 11(2):194. https://doi.org/10.3390/plants11020194. DOI: https://doi.org/10.3390/plants11020194

Darakhshan, S., Pour, A. B., Colagar, AH., Sisakhtnezhad, S. (2015): Thymoquinone and its therapeutic potentials. Pharmacological research, 95:138-158. https://doi.org/10.1016/j.phrs.2015.03.011. DOI: https://doi.org/10.1016/j.phrs.2015.03.011

Kaseb, A. O., Chinnakannu, K., Chen, D., Sivanandam, A., Tejwani, S., Menon, M., ... & Reddy, G. P. V. (2007): Androgen receptor–and E2F-1–targeted thymoquinone therapy for hormone-refractory prostate cancer. Cancer research, 67(16):7782-7788. https://doi.org/10.1158/0008-5472.CAN-07-1483. DOI: https://doi.org/10.1158/0008-5472.CAN-07-1483

Roepke, M., Diestel, A., Bajbouj, K., Walluscheck, D., Schonfeld, P., Roessner, A., ... & Gali-Muhtasib, H. (2007): Lack of p53 augments thymoquinone-induced apoptosis and caspase activation in human osteosarcoma cells. Cancer biology & therapy, 6(2):160-169. https://doi.org/10.4161/cbt.6.2.3575. DOI: https://doi.org/10.4161/cbt.6.2.3575

Alhosin, M., Ibrahim, A., Boukhari, A., Sharif, T., Gies, J. P., Auger, C., & Schini-Kerth, V. B. (2012): Anti-neoplastic agent thymoquinone induces degradation of α and β tubulin proteins in human cancer cells without affecting their level in normal human fibroblasts. Investigational new drugs, 30:1813-1819. 10.1007/s10637-011-9734-1. DOI: https://doi.org/10.1007/s10637-011-9734-1

Gali-Muhtasib, H., Kuester, D., Mawrin, C., Bajbouj, K., Diestel, A., Ocker, M., ... & Schneider-Stock, R. (2008): Thymoquinone triggers inactivation of the stress response pathway sensor CHEK1 and contributes to apoptosis in colorectal cancer cells. Cancer research, 68(14):5609-5618. https://doi.org/10.1158/0008-5472.CAN-08-0884. DOI: https://doi.org/10.1158/0008-5472.CAN-08-0884

Arslan, B. A., Isik, F. B., Gur, H., Ozen, F., Catal, T. (2017): Apoptotic effect of Nigella sativa on human lymphoma U937 cells. Pharmacognosy magazine, 13(3):S628. 10.4103/pm.pm_93_17. DOI: https://doi.org/10.4103/pm.pm_93_17

Majdalawieh, A. F., Fayyad, M. W., Nasrallah, G. K. (2017): Anti-cancer properties and mechanisms of action of thymoquinone, the major active ingredient of Nigella sativa. Critical reviews in food science and nutrition, 57(18): 3911-3928. https://doi.org/10.1080/10408398.2016.1277971. DOI: https://doi.org/10.1080/10408398.2016.1277971

Downloads

Published

2025-05-29

How to Cite

BALKİS, E., Demirkan, Z., & Kaya, B. . (2025). The effect of different solvent selection on the antioxidant capacity and cytotoxicity of Nigella sativa extracts. Journal of Applied Biological Sciences, 19(2), 141–147. https://doi.org/10.71336/jabs.1467

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.