DETECTION OF INVA GENE BY PCR AND IDENTIFICATION WITH SUSCEPTIBILITY PATTERN EVALUATION BY VITEK 2 OF SALMONELLA ISOLATES

Abstract views: 29 / PDF downloads: 22

Authors

Keywords:

Hospital wastewater, VITEK 2, PCR, invA gene, multi-drug resistant

Abstract

This study aims to identify and antimicrobial susceptibility of hospital wastewater in Dhaka city. Total 134 Salmonella isolates were identified using cultural characteristics, automated biochemical test, and PCR for invA gene detection. Biochemical identification and Antimicrobial Susceptibility Test (AST) were performed through VITEK 2. Essential Agreement (EA) and Categorical Agreement (CA) were worked out according to the CLSI breakpoint. We also measured Very Major Error (VME), Major Error (ME), and Minor Error (mE). Seven Salmonella serotypes were identified through VITEK 2 ID-GN card and invA gene detection. S. typhimurium, S. paratyphi, S. enteritidis, S. enterica, and S. typhi were most predominant, while S. gallinarum and S. arizonae were less common serovar. Among 136 isolates, 134 (98.5%) were correctly identified to the species level. Accordingly, 47% (64 out of 136), 29% (39 out of 136), 10.29% (14 out of 136), and 12.5% (17 out of 136) isolates were identified within the excellent, very good, good, and acceptable levels. Moreover, we found 87% of isolates (116 out of 134) exerted at least resistance to one antibiotic. Of 134 tested isolates, there were 7 serotypes that showed Very Major Error (VME). The final Major Error (ME) and Minor Error (mE) shown organisms were 15 and 67. Overall 98.86% Essential Agreement (EA) and 95.95% Categorical Agreement (CA) was calculated. The most common resistance pattern of multi-resistant serovares was to ampicillin, chloramphenicol, sulphonamide, and trimethoprim. Ongoing research is a matter of concern for emerging multi-drug resistance of Salmonella serovares and helpful evidence for healthcare provider.

References

Majowicz, S.E., Musto, J., Scallan, E., Angulo, F.J., Kirk, M., O’Brien, S.J., Jones, T.F., Fazil, A.H.R. (2010): The global burden of nontyphoidal salmonella gastroenteritis. Clinical Infectious Diseases 50(6): 882–889. https://doi.org/10.1086/650733.

Stanaway, J. D., Parisi, A., Sarkar, K., Blacker, B. F., Reiner, R. C., Hay, S. I., Nixon, M. R., Dolecek, C., James, S. L., Mokdad, A. H., Abebe, G., Ahmadian, E., Alahdab, F., Alemnew, B. T. T., Alipour, V., Allah Bakeshei, F., Animut, M. D., Ansari, F., Arabloo, J., Crump, J. A. (2019): The global burden of non-typhoidal salmonella invasive disease: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet Infectious Diseases 19(12): 1312–1324. https://doi.org/10.1016/S1473-3099(19)30418-9.

Matheson, N., Kingsley, R. A., Sturgess, K., Aliyu, S. H., Wain, J., Dougan, G., Cooke, F. J. (2010): Ten years experience of Salmonella infections in Cambridge, UK. Journal of Infection 60(1): 21–25. https://doi.org/10.1016/j.jinf.2009.09.016.

Ahmed, D., Nahid, M. A., Sami, A. B., Halim, F., Akter, N., Sadique, T., Rana, M. S., Elahi, M. S. Bin., Rahman, M. M. (2017): Bacterial etiology of bloodstream infections and antimicrobial resistance in Dhaka, Bangladesh, 2005-2014. Antimicrobial Resistance and Infection Control 6(1): 1–11. https://doi.org/10.1186/s13756-016-0162-z.

Lien, L. T. Q., Hoa, N. Q., Chuc, N. T. K., Thoa, N. T. M., Phuc, H. D., Diwan, V., Dat, N. T., Tamhankar, A. J., Lundborg, C. S. (2016): Antibiotics in wastewater of a rural and an urban hospital before and after wastewater treatment, and the relationship with antibiotic use-a one year study from Vietnam. International Journal of Environmental Research and Public Health 13(6): 588. https://doi.org/10.3390/ijerph13060588.

Asfaw, T., Negash, L., Kahsay, A., Weldu, Y. (2017): Antibiotic Resistant Bacteria from Treated and Untreated Hospital Wastewater at Ayder Referral Hospital, Mekelle, North Ethiopia. Advances in Microbiology 07(12): 871–886. https://doi.org/10.4236/aim.2017.712067.

Zhang, S., Huang, J., Zhao, Z., Cao, Y., Li, B. (2020): Hospital Wastewater as a Reservoir for Antibiotic Resistance Genes: A Meta-Analysis. In Frontiers in Public Health 8: 574968. https://doi.org/10.3389/fpubh.2020.574968.

Shanmugasamy, M., Velayutham, T., Rajeswar, J. (2011): Inv a gene specific pcr for detection of salmonella from broilers. Veterinary World 4(12): 562–564. https://doi.org/10.5455/vetworld.2011.562-564.

Aires, C. A. M., Pereira, P. S., Asensi, M. D., Carvalho-Assef, A. P. D. A. (2016): mgrB mutations mediating polymyxin B resistance in Klebsiella pneumoniae isolates from rectal surveillance swabs in Brazil. Antimicrobial Agents and Chemotherapy 60(11): 6969–6972. https://doi.org/10.1128/AAC.01456-16.

Doern, C. D., Michael Dunne, W., Burnham, C. A. D. (2011): Detection of Klebsiella pneumoniae Carbapenemase (KPC) production in non-Klebsiella pneumoniae Enterobacteriaceae isolates by use of the Phoenix, Vitek 2, and disk diffusion methods. Journal of Clinical Microbiology 49(3): 1143–1147. https://doi.org/10.1128/JCM.02163-10.

Wayne, P. A. (2014): Evaluation of precision of quantitative measurement procedures ; approved guideline—third edition. Clinical and Laboratory Standars Institute, October, CLSI document EP05:A3.

BioMérieux, I. (2014): VITEK 2-technology: Product Information. BioMérieux S. A., 514740-1EN1—[2013-04]. www.biomerieux.com.

Biomérieux Inc USA. (2014): VITEK® 2 Selection of publications. In bioMérieux S.A. (Issue 1). http://www.biomerieux-usa.com/upload/VTK 2 Compact Brochure -26.pdf.

Merchant, I. A., Packer, R. A. (1967): Veterinary bacteriology and virology. In Iowa State University Press Ames (7th ed). https://worldcat.org/title/922159.

Pincus, D. H. (2010): Microbial identification using the bioMérieux VITEK® 2 system. Encyclopedia of Rapid Microbiological Methods:1–32.

Organization, W. H. (2014): Global status report on noncommunicable diseases 2014 (Issue WHO/NMH/NVI/15.1). World Health Organization.

BIOMÉRIEUX INC USA. (2013): VITEK® 2 User´s Manual. In bioMérieux S.A. 510731st–4th ed., Vol. 33, Issue 1.

Liu, T., Liljebjelke, K., Bartlett, E., Hofacre, C., Sanchez, S., Maurer, J. J. (2002): Application of nested polymerase chain reaction to detection of Salmonella in poultry environment. Journal of Food Protection 65(8): 1227–1232. https://doi.org/10.4315/0362-028X-65.8.1227.

Ogunremi, D., Nadin-Davis, S., Dupras, A. A., Márquez, I. G., Omidi, K., Pope, L., Devenish, J., Burke, T., Allain, R., Leclair, D. (2017): Evaluation of a multiplex pcr assay for the identification of Salmonella serovars enteritidis and typhimurium using retail and abattoir samples. Journal of Food Protection 80(2): 295–301. https://doi.org/10.4315/0362-028X.JFP-16-167.

Yanestria, S. M., Rahmaniar, R. P., Wibisono, F. J., Effendi, M. H. (2019): Detection of invA gene of Salmonella from milkfish (Chanos chanos) at Sidoarjo wet fish market, Indonesia, using polymerase chain reaction technique. Veterinary World 12(1): 170–175. https://doi.org/10.14202/vetworld.2019.170-175.

Bobenchik, A. M., Deak, E., Hindler, J. A., Charlton, C. L., Humphries, R. M. (2015): Performance of Vitek 2 for antimicrobial susceptibility testing of Enterobacteriaceae with Vitek 2 (2009 FDA) and 2014 CLSI breakpoints. Journal of Clinical Microbiology 53(3): 816–823. https://doi.org/10.1128/JCM.02697-14.

Glauser, M. P. (1997): 8th European Congress of Clinical Microbiology and Infectious Diseases Lausanne, Switzerland, May 25–28, 1997. Clinical Microbiology and Infection 3(1): 1. https://doi.org/10.1111/j.1469-0691.1997.tb00241.x.

Funke, G., Funke-Kissling, P. (2004): Evaluation of the new VITEK 2 card for identification of clinically relevant gram-negative rods. Journal of Clinical Microbiology 42(9): 4067–4071. https://doi.org/10.1128/JCM.42.9.4067-4071.2004.

O’Hara, C. M., Miller, J. M. (2003): Evaluation of the vitek 2 ID-GNB assay for identification of members of the family Enterobacteriaceae and other nonenteric gram-negative bacilli and comparison with the vitek GNI+ card. Journal of Clinical Microbiology 41(5): 2096–2101. https://doi.org/10.1128/JCM.41.5.2096-2101.2003.

de Oliveira, S., Rodenbusch, C., Cé, M. C., Rocha, S. L. S., Canal, C. (2003): Evaluation of selective and non‐selective enrichment PCR procedures for Salmonella detection. Letters in Applied Microbiology 36: 217–221. https://doi.org/10.1046/j.1472-765X.2003.01294.x.

Bhatta, D. R., Bangtrakulnonth, A., Tishyadhigama, P., Saroj, S. D., Bandekar, J. R., Hendriksen, R. S., & Kapadnis, B. P. (2007): Serotyping, PCR, phage‐typing and antibiotic sensitivity testing of Salmonella serovars isolated from urban drinking water supply systems of Nepal. Letters in Applied Microbiology 44(6): 588–594. https://doi.org/10.1111/j.1472-765X.2007.02133.x.

Yehia, H. M., Fawzy Elkhadragy, M., Al-Masoud1, A. A., Al-Dagal1, M. M., Al-Dagal, M. (2020): invA Gene to Detect Salmonella Enterica Serovar Typhimurium Supported by Serum Anti-Salmonella Antibodies and Protein Proles for Chicken Carcass Isolates: 1–14. https://doi.org/10.21203/rs.3.rs-87131/v1.

Wayne, PA. (2009): Performance standards for antimicrobial susceptibility testing. Nineteenth Informational Supplement. In Clinical Laboratory Standardization Institute (19th ed., Vol. M100).

Wayne, PA. (2020): Performance Standards for Antimicrobial Susceptibility Testing. Thirtieth Informational Supplement. In Clinical Laboratory Standardization Institute (30th ed., Vol. M100).

FDA, U.S Department of Health and Human Services, Food and Drug Administration, & Center for Devices and Radiological Health. (2009): Guidance for Industry and FDA. Class II Special Controls Guidance Document: Antimicrobial Susceptibility Test (AST) Systems: 1–42. https://www.fda.gov/medical-devices/guidance-documents-medical-devices-and-radiation-emitting-products/antimicrobial-susceptibility-test-ast-systems-class-ii-special-controls-guidance-industry-and-fda.

Yanagimoto, K., Yamagami, T., Uematsu, K., Haramoto, E. (2020): Characterization of Salmonella isolates from wastewater treatment plant influents to estimate unreported cases and infection sources of salmonellosis. Pathogens 9(1). https://doi.org/10.3390/pathogens9010052.

Kim, T. S., Kim, M. J., Kim, S. H., Seo, J. J., Kee, H. Y., Chung, J. K., Kim, E. S., Moon, Y. W., Ha, D. R., Kim, M. K., Lim, S. K., Nam, H. M. (2013): Antibiotic resistance among salmonella spp. isolated from feces of patients with acute diarrhea in gwangju area, Korea, during 2000-2009. Korean Journal of Microbiology 49(2): 118–125. https://doi.org/10.7845/kjm.2013.3032.

Yoon, K. B., Song, B. J., Shin, M. Y., Lim, H. C., Yoon, Y. H., Jeon, D. Y., Ha, H., Yang, S. I., Kim, J. B. (2017): Antibiotic resistance patterns and serotypes of Salmonella spp. Isolated at Jeollanam-do in Korea. Osong Public Health and Research Perspectives 8(3): 211–219. https://doi.org/10.24171/j.phrp.2017.8.3.08.

Humphries, R. M., Ambler, J., Mitchell, S. L., Castanheira, M., Dingle, T., Hindler, J. A., Koeth, L., Sei, K. (2018): CLSI methods development and standardization working group best practices for evaluation of antimicrobial susceptibility tests. Journal of Clinical Microbiology 56(4). https://doi.org/10.1128/JCM.01934-17.

Humphries, R., Bobenchik, A. M., Hindler, J. A., Schuetz, A. N. (2021): Overview of Changes to the Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing M100, 31st Edition. Journal of Clinical Microbiology 59(12): 1–13. https://doi.org/10.1128/JCM.00213-21.

Baldrias, L. R., Raymundo, A. K. (2009): Antimicrobial resistance profile of local campylobacter jejuni recovered from ceca of dressed chickens of commercial and backyard raisers in Laguna, Philippines. Philippine Journal of Veterinary Medicine 46(2): 87–94.

Espinar, M. J., Rocha, R., Ribeiro, M., Rodrigues, A. G., Pina-Vaz, C. (2011): Extended-spectrum β-lactamases of Escherichia coli and Klebsiella pneumoniae screened by the VITEK 2 system. Journal of Medical Microbiology 60(6): 756–760. https://doi.org/10.1099/jmm.0.024075-0.

Merkevičienė, L., Butrimaitė-Ambrozevičienė, Č., Paškevičius, G., Pikūnienė, A., Virgailis, M., Dailidavičienė, J., Daukšienė, A., Šiugždinienė, R., Ruzauskas, M. (2022): Serological Variety and Antimicrobial Resistance in Salmonella Isolated from Reptiles. Biology 11(6). https://doi.org/10.3390/biology11060836.

Chu, C., Doublet, B., Lee, Y. L., Cloeckaert, A., Chiou, C. S., Chen, S. W., Lin, C. W., & Chiu, C. H. (2012): Salmonella genomic island 1-J variants associated with change in the antibiotic resistance gene cluster in multidrug-resistant Salmonella enterica serovar Virchow isolated from humans, Taiwan, 2004-2006. Clinical Microbiology and Infection 18(1): 47–53. https://doi.org/10.1111/j.1469-0691.2011.03464.x.

Tagg, K. A., Francois Watkins, L., Moore, M. D., Bennett, C., Joung, Y. J., Chen, J. C., Folster, J. P. (2019): Novel trimethoprim resistance gene dfrA34 identified in Salmonella Heidelberg in the USA. Journal of Antimicrobial Chemotherapy 74(1): 38–41. https://doi.org/10.1093/jac/dky373.

Downloads

Published

2024-10-01

How to Cite

Fahima Akter, & Shamimuzzaman, M. . (2024). DETECTION OF INVA GENE BY PCR AND IDENTIFICATION WITH SUSCEPTIBILITY PATTERN EVALUATION BY VITEK 2 OF SALMONELLA ISOLATES. Journal of Applied Biological Sciences, 18(3), 235–252. Retrieved from https://jabsonline.org/index.php/jabs/article/view/1313

Issue

Section

Articles