Harnessing native flora and rhizobacteria in floating wetlands for sustainable water decontamination

Authors

DOI:

https://doi.org/10.71336/jabs.1405

Keywords:

Contamination, Floating treatment wetland, Indigenous plants, Plant growth promoting, rhizobacteria, Phytoremediation

Abstract

Water pollution poses significant threats to ecosystems and human health. Sustainable, eco-friendly technologies for treating contaminated water using phytoremediation offer a promising solution to detoxify the polluted water. This study uses floating treatment wetlands (FTWs), a cost-effective phytoremediation technology, to treat contaminated water by employing indigenous plants and their associated plant growth-promoting rhizobacteria (PGPR). Plant samples were collected from the banks of a water channel in the sub-tropical region of Karima, Attock, Pakistan (33°39'04.2"N, 72°42'14.6"E). The plant species selected for this study were Cocklebur (Xanthium strumarium), Vetiver grass (Chrysopogon zizanioides), Parthenium (Parthenium hystophorous), Bermuda grass (Cynodon dactylon), and Hemp (Cannabis sativa), because of their potential for heavy metal uptake and tolerance. PGPR isolates associated with these plants underwent biochemical characterization, yielding positive results and further validated through nucleotide homology to ensure the selection of the most effective strains. The FTWs were seeded with Vetiver grass and Bermuda grass, both known for their robustness and high phytoremediation capacity. Physicochemical analyses of the contaminated water revealed significant reductions in heavy metal concentrations, including cadmium reduced (to 0.0000 mg/L), nickel (to 0.0016 mg/L), and chromium (to 0.0117 mg/L. These results underscore the effectiveness of the FTW system in improving water quality. Present work demonstrates that the integration of Vetiver grass (Chrysopogon zizanioides) and Bermuda grass (Cynodon dactylon) with their symbiotic bacteria, Stenotrophomonas maltophilia, in FTWs, is a viable and sustainable method for the remediation of heavy metal-contaminated water, offering a practical solution for environmental restoration and pollution control.

Author Biographies

Azka Javaid, Department of Biosciences, Faculty of Basic Sciences, Quaid Campus, University of Wah, Wah Cantt- 47010, Pakistan

Department of Biosciences, Faculty of Basic Sciences, Quaid Campus, University of Wah, Wah Cantt- 47010, Pakistan

Shumaila Naz, Department of Biosciences, Faculty of Basic Sciences, Quaid Campus, University of Wah, Wah Cantt- 47010, Pakistan

Department of Biosciences, Faculty of Basic Sciences, Quaid Campus, University of Wah, Wah Cantt- 47010, Pakistan

Sohail Hameed, Department of Biosciences, Faculty of Basic Sciences, Quaid Campus, University of Wah, Wah Cantt- 47010, Pakistan

Department of Biosciences, Faculty of Basic Sciences, Quaid Campus, University of Wah, Wah Cantt- 47010, Pakistan

References

Jaafar, J., Zaidi, A. A., Naseer, M. N. (Eds.) (2024). Membrane Technologies for Heavy Metal Removal from Water (1st ed.). CRC Press, Boca Raton, Florida. https://doi.org/10.1201/9781003326281 DOI: https://doi.org/10.1201/9781003326281

Angon, P. B., Islam, M. S., Kc, S., Das, A., Anjum, N., Poudel, A., Suchi, S. A. (2024): Sources, Effects and Present Perspectives of Heavy Metals Contamination: Soil, Plants and Human Food chain. Heliyon. https://doi.org/10.32942/X2F011 DOI: https://doi.org/10.32942/X2F011

Das, A. P., van Hullebusch, E. D., & Akçil, A. (Eds.) (2024). Sustainable Management of Mining Waste and Tailings: A Circular Economy Approach (1st ed.). CRC Press, Boca Raton, Florida. https://doi.org/10.1201/9781003442455 DOI: https://doi.org/10.1201/9781003442455

Shah, V., Daverey, A. (2020): Phytoremediation: A Multidisciplinary Approach to Clean up Heavy Metal Contaminated Soil. Environmental Technology and Innovation 18: 100774. https://doi.org/10.1016/j.eti.2020.100774 DOI: https://doi.org/10.1016/j.eti.2020.100774

Song, X., Li, C., Chen, W. (2022): Phytoremediation Potential of Bermuda grass (Cynodon dactylon (L.) pers.) in Soils Co-contaminated with Polycyclic Aromatic Hhydrocarbons and Cadmium. Ecotoxicology and Environmental Safety 234: 113389. https://doi.org/10.1016/j.ecoenv.2022.113389 DOI: https://doi.org/10.1016/j.ecoenv.2022.113389

Hathurusinghe, S. H. K., Azizoglu, U., Shin, J. H. (2024): Holistic Approaches to Plant Stress Alleviation: A Comprehensive Review of the Role of Organic Compounds and Beneficial Bacteria in Promoting Growth and Health. Plants 13(5): 695. https://doi.org/10.3390/plants13050695 DOI: https://doi.org/10.3390/plants13050695

Bhanse, P., Kumar, M., Singh, L., Awasthi, M. K., Qureshi, A. (2022): Role of Plant Growth-Promoting Rhizobacteria in Boosting the Phytoremediation of Stressed Soils. Opportunities, Challenges, and Prospects. Chemosphere 303: 134954.

https://doi.org/10.1016/j.chemosphere.2022.134954 DOI: https://doi.org/10.1016/j.chemosphere.2022.134954

Upadhyay, S. K., Rajput, V. D., Kumari, A., Espinosa-Saiz, D., Menendez, E., Minkina, T., Dwivedi, P., Mandzhieva, S. (2023): Plant Growth-Promoting Rhizobacteria: A Potential Bio-asset for Restoration of Degraded Soil and Crop Productivity with Sustainable Emerging Techniques. Environmental Geochemistry and Health 45(12): 9321-9344. https://doi.org/10.1007/s10653-022-01433-3 DOI: https://doi.org/10.1007/s10653-022-01433-3

Singh, M., Chaudhary, P., Bhutani, S., Bhasin, S., Mehra, A., Tripathi, K. (2023): Overview of Microbial Associations and Their Role Under Aquatic Ecosystems: In Current Status of Fresh Water Microbiology. Springer Nature, Singapore

https://doi.org/10.1007/978-981-99-5018-8_4 DOI: https://doi.org/10.1007/978-981-99-5018-8_4

Afzal, M., Arslan, M., Müller, J. A., Shabir, G., Islam, E., Tahseen, R., Anwar-ul-Haq, M., Iqbal, S., Khan, Q. M. (2019): Floating Treatment Wetlands as a Suitable Option for Large-scale Wastewater Treatment. Nature Sustainability 2(9): 863-871. https://doi.org/10.1038/s41893-019-0350-y DOI: https://doi.org/10.1038/s41893-019-0350-y

Rahim, Z., Khan, K., Khalid, A. (2022): Investigation on the Potential of Industrial Hemp for Phytoremediation of Heavy Metals. Plants 11(5): 595.

https://doi.org/10.3390/plants11050595 DOI: https://doi.org/10.3390/plants11050595

Siddique, A. B., Ahsan, H., Shahid, M., Aslam, B., Nawaz, Z., Hussain, R., Li, K. (2025): Preparation and Characterization of Essential oil from Lavandula spica Plant and its Antimicrobial Activity against Pseudomonas aeruginosa and Staphylococcus aureus. Microbial Pathogenesis 198: 107157. https://doi.org/10.1016/j.micpath.2024.107157 DOI: https://doi.org/10.1016/j.micpath.2024.107157

Usta, M., Zengin, K., Okuyan, S., Solmaz, S., Nalçacıoğlu, R., Demirbağ, Z. (2025): Isolation and Probiotic Evaluation of Apilactobacillus kunkeei and Bombella sp. from Apis mellifera anatoliaca and Bombus terrestris. International Microbiology 1-12. https://doi.org/10.1007/s10123-024-00631-6 DOI: https://doi.org/10.1007/s10123-024-00631-6

Ogundele, S. B., Oriola, A. O., Patil, R. B., Faloye, K. O., Adeboye, O. M., Chinwuba, P. E., Oyedeji, A. O. (2025): Elucidating the α-amylase Inhibitory Activity of Phytochemicals from Artocarpus altilis: An in silico and in vitro approach. Journal of Molecular Structure 1325: 141009. https://doi.org/10.1016/j.molstruc.2024.141009 DOI: https://doi.org/10.1016/j.molstruc.2024.141009

Bhanse, P., Singh, L., Qureshi, A. (2025): Functional and Genomic Potential of Burkholderia contaminans PB_AQ24 Isolate for Boosting the Growth of Bamboo Seedlings in Heavy Metal Contaminated Soils. Applied Biochemistry and Biotechnology 1-20. https://doi.org/10.1007/s12010-024-05156-2 DOI: https://doi.org/10.1007/s12010-024-05156-2

Raval, J. B., Mehta, V. N., Jha, S., Park, T. J., Kailasa, S. K. (2025): Synthesis of Green Emissive Plectranthus scutellarioides Carbon Dots for Sustainable and Label-free Detection of Phytohormone Indole-3-acetic Acid. Inorganic Chemistry Communications 171: 113660. https://doi.org/10.1016/j.inoche.2024.113660 DOI: https://doi.org/10.1016/j.inoche.2024.113660

Cheng, H. R., Jiang, N. (2009): Extremely Rapid Extraction of DNA from Bacteria and Yeast. Biotechnology Letters 28: 55-59.

https://doi.org/10.1007/s10529-005-4688-z DOI: https://doi.org/10.1007/s10529-005-4688-z

Lane, D. J. (1991) 16S/23S rRNA Sequencing. In: Stackebrandt, E. and Goodfellow, M. (Eds.) Nucleic Acid Techniques in Bacterial Systematic, John Wiley and Sons, New York, 115-175.

Tamura, K., Stecher, G., Kumar, S. (2021): MEGA11: Molecular Evolutionary Genetics Analysis version 11. Molecular Biology and Evolution 38(7): 3022-3027. https://doi.org/10.1093/molbev/msab120 DOI: https://doi.org/10.1093/molbev/msab120

Mao, J., Hu, G., Deng, W., Zhao, M., Li, J. (2024): Industrial Wastewater Treatment Using Floating Wetlands: A Review. Environmental Science and Pollution Research 31(4): 5043-5070. https://doi.org/10.1007/s11356-023-31507-3 DOI: https://doi.org/10.1007/s11356-023-31507-3

Çağlar, Ö., Bulut, S., Öztürk, A. (2024): Determination of Yield Parameters of Barley (Hordeum vulgare L.) Inoculated with Phosphorous-solubilizing and Nitrogen-fixing Bacteria. Polish Journal of Environmental Studies 33(2). https://doi.org/10.15244/pjoes/172036 DOI: https://doi.org/10.15244/pjoes/172036

Yucel, A., Örtel, E. (2023): Phytoremediation Capacity of Umbrella palm and Vetiver in Improving Surface Water Quality by Floating Treatment Wetland. Ormancılık Araştırma Dergisi, 10(2): pp.168-181. https://doi.org/10.17568/ogmoad.1288019 DOI: https://doi.org/10.17568/ogmoad.1288019

Chen, H., Zhong, C., Berkhouse, H., Zhang, Y., Lv, Y., Lu, W., Yang, Y., Zhou, J. (2016): Removal of Cadmium by Bioflocculant Produced by Stenotrophomonas maltophilia using Phenol-containing Wastewater. Chemosphere, 155: pp.163-169. https://doi.org/10.1016/j.chemosphere.2016.04.044 DOI: https://doi.org/10.1016/j.chemosphere.2016.04.044

Golia, E. E., Bethanis, J., Ntinopoulos, N., Kaffe, G. G., Komnou, A. A., & Vasilou, C. (2023). Investigating the potential of heavy metal accumulation from hemp. The use of industrial hemp (Cannabis Sativa L.) for phytoremediation of heavily and moderated polluted soils. Sustainable Chemistry and Pharmacy, 31, 100961., https://doi.org/10.1016/j.scp.2022.100961 DOI: https://doi.org/10.1016/j.scp.2022.100961

Natarajan, S., Subbiah, M., Manam, V. K., Mohammad Said Al-Tawaha, A. R., Al-Tawaha, A. R., Adel Qotb, M. (2024): Microbial-Meditated Remediation of Crude Oil-Contaminated Soil: In Microbial Applications for Environmental Sustainability. Springer Nature, Singapore. https://doi.org/10.1007/978-981-97-0676-1_4 DOI: https://doi.org/10.1007/978-981-97-0676-1_4

Joshi, S., Gangola, S., Bhandari, G., Bhandari, N.S., Nainwal, D., Rani, A., Malik, S., Slama, P. (2023): Rhizospheric bacteria: the Key to Sustainable Heavy Metal Detoxification Strategies. Frontiers in Microbiology 14: 1229828. https://doi.org/10.3389/fmicb.2023.1229828 DOI: https://doi.org/10.3389/fmicb.2023.1229828

Kumar, V., Bera, T., Roy, S., Vuong, P., Jana, C., Sarkar, D. J., Devi, M. S., Jana, A. K., Rout, A. K., Kaur, P., Das, B. K. (2023): Investigating Bio-remediation Capabilities of a Constructed Wetland through Spatial Successional Study of the Sediment Microbiome. NPJ Clean Water 6(1): 8. https://doi.org/10.1038/s41545-023-00225-1 DOI: https://doi.org/10.1038/s41545-023-00225-1

Tsalas, N., Golfinopoulos, S. K., Samios, S., Katsouras, G., Peroulis, K. (2024): Optimization of Energy Consumption in a Wastewater Treatment Plant: An Overview. Energies, 17(12), 2808. https://doi.org/10.3390/en17122808 DOI: https://doi.org/10.3390/en17122808

Kumari, H., Chahal, S., Kumar, A., Parmar, R. (2024): Efficient Adsorption, Mechanism and Photocatalytic Performance of Yb-SnO2 photocatalyst. Ceramics International, 50(9), 15976-15993. https://doi.org/10.1016/j.ceramint.2024.02.077 DOI: https://doi.org/10.1016/j.ceramint.2024.02.077

Additional Files

Published

2025-01-31

How to Cite

Javaid, A. ., Naz, S., & Hameed, S. (2025). Harnessing native flora and rhizobacteria in floating wetlands for sustainable water decontamination. Journal of Applied Biological Sciences, 19(1), 38–45. https://doi.org/10.71336/jabs.1405

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.