Bioaccumulation of copper and its effects on growth and biochemical parameters in bitter gourd (Momordica charantia) plants
DOI:
https://doi.org/10.71336/jabs.1407Keywords:
Bitter gourd, Copper, Germination, Heavy metals, Soil ContaminationAbstract
Heavy metal pollution has increased broadly over the globe due to industrial, anthropogenic activities and modern industrialization. Disturbing the environment which leads to causing various health hazards to our humankind. The present study is aimed to evaluate the bioaccumulation of copper and its effects on growth and biochemical parameters in Bitter Gourd (Momordica charantia L.) plants. Group 1 plants in polyethylene bag with soil served as control not received copper treatment, groups 2, 3 and 4 received copper treatment of 100, 200 and 400 mg throughout the experimental period. Our results revealed significant reduction in growth parameters such as germination percentage, root length, shoot length, fresh weight, dry weight and vigour index, biochemical parameters such as carbohydrate and protein contents and enzymic antioxidants such as catalase and super oxide dismutase, under copper treatment at various concentrations showed heavy metal toxicity in Bitter gourd plants. Therefore, it is essential to meticulously regulate the copper content in the soil to prevent any negative impacts on the growth and development of plants.
References
Rahman, Z., Singh, V.P. (2019): The Relative Impact of Toxic Heavy Metals (THMs) Arsenic (As), Cadmium (Cd), Chromium (Cr)(VI), Mercury (Hg), and Lead (Pb) On the Total Environment: An Overview. Environmental Monitoring and Assessment 191:1–21. DOI: https://doi.org/10.1007/s10661-019-7528-7. DOI: https://doi.org/10.1007/s10661-019-7528-7
Khan, A., Kuek, C., Chaudhry, T., Khoo, C., Hayes, W. (2000): Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41(1): 197–207. DOI: 10.1016/s0045-6535(99)00412-9. DOI: https://doi.org/10.1016/S0045-6535(99)00412-9
Nazir, F., Hussain, A., Fariduddin, Q. (2019): Hydrogen peroxide modulate photosynthesis and antioxidant systems in tomato (Solanum lycopersicum L.) plants under copper stress. Chemosphere 230: 544-558. https://doi.org/10.1016/j.chemosphere.2019.05.001. DOI: https://doi.org/10.1016/j.chemosphere.2019.05.001
Gall, J. E., Rajakaruna, N. (2013): The physiology, functional genomics, and applied ecology of heavy metal-tolerant Brassicaceae. In M. Lang (Ed.), Brassicaceae: Charac¬terization, functional genomics and health benefits. Hauppauge, Nova 121-148.
Hansch, R, Mendel, R.R. (2009): Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe,Ni, Mo, B, Cl). Curent Opinion in Plant Biology 12(3): 259-266. DOI: 10.1016/j.pbi.2009.05.006. DOI: https://doi.org/10.1016/j.pbi.2009.05.006
Thelma, A., Christie, M., Sayes. (2019): The potential exposure and hazards of copper nanoparticles: A review. Environmental Toxicology and Pharmacology 71:103220. DOI: 10.1016/j.etap.2019.103220. DOI: https://doi.org/10.1016/j.etap.2019.103220
Upadhyay, R.K. Panda, S.K. (2009): Copper induced growth inhibition, oxidative stress and ultrastructural alterations in freshly grown water lettuce (Pistia stratiotes L.). Comptes Rendus Biologies 332: 623-632. DOI: 10.1016/j.crvi.2009.03.001. DOI: https://doi.org/10.1016/j.crvi.2009.03.001
Bouazizi, H., Jouili, H., Geitmann, A. Ferjani, E.E.I. (2010): Copper toxicity in expanding leaves of Phaseolus vulgaris L.: antioxidant enzyme response and nutrient element uptake. Ecotoxicology and Environmental Safety 73: 1304-1308. DOI: 10.1016/j.ecoenv.2010.05.014. DOI: https://doi.org/10.1016/j.ecoenv.2010.05.014
La Torre, A., Iovino, V., Caradonia, F. (2018): Copper in plant protection: Current situation and prospects. Phytopathologia Mediterranea 57(2): 201-236. DOI: 10.14601/Phytopathol_Mediterr-23407.
Adrees, M., Ali, S., Rizwan, M., Ibrahim, M., Abbas, F., Farid, M., Zia-ur-Rehman, M., Irshad, M.K., Bharwana, S.A. (2015): The effect of excess copper on growth and physiology of important food crops: A review. Environmental Science and Pollution Research 22(11): 8148-8162. DOI: 10.1007/s11356-015-4496-5. DOI: https://doi.org/10.1007/s11356-015-4496-5
Cambrolle, J., García Fernández, J.L., Ocete, R., Figueroa, E., Cantos, M. (2013): Growth and photosynthetic responses to copper in wild grapevine. Chemosphere. 93: 294-301. DOI:10.1016/j.chemosphere.2013.04.080. DOI: https://doi.org/10.1016/j.chemosphere.2013.04.080
Marques, D.M., da Silva, A.B., Mantovani, J.R., Magalhães, P.C., de Souza, T.C. (2019): Root morphology and leaf gas exchange in Peltophorum dubium (Spreng.) Taub. (Caesalpinioideae) exposed to copper-induced toxicity. South African Journal of Botany 121: 186-192. https://doi.org/10.1016/j.sajb.2018.11.007. DOI: https://doi.org/10.1016/j.sajb.2018.11.007
Feigl, G., Kumar, D., Lehotai, N., Tugyi, N., Molnár, A., Ordog, A., Szepesi, A., Gémes, K., Laskay, G., Erdei, L., Kolbert, Z. (2013): Physiological and morphological responses of the root system of Indian mustard (Brassica juncea L. Czern.) and rapeseed (Brassica napus L.) to copper stress. Ecotoxicology and Environmental Safety, 94:179-189. https://doi.org/10.1016/j.ecoenv.2013.04.029 DOI: https://doi.org/10.1016/j.ecoenv.2013.04.029
Behera, T. K., Staub, J. E., Behera, S., & Simon, P.W. (2008): Bitter gourd and human health. Medicinal and Aromatic Plant Science and Biotechnology 1(2): 224–226.
Bortolotti, M., Mercatelli, D., Polito, L. (2019): Momordica charantia, a nutraceutical approach for inflammatory related diseases. Frontiers in Pharmacology 10: 486. DOI: 10.3389/fphar.2019.00486. DOI: https://doi.org/10.3389/fphar.2019.00486
Janagal, B., Singh, C., Purvia, R. P., Adlakha, M. (2018): A review of hypoglycemic effect of Momordica charantia W.S.R. to madhumeh. International Journal of Ayurveda and Pharma Research 6(1): 50–54.
Bai, L. Y., Chiu, C. F., Chu, P. C., Lin, W. Y., Chiu, S. J., Weng, J. R. (2016): A triterpenoid from wild bitter gourd inhibits breast cancer cells. Scientific Reports 6(1), 1–10. https://doi.org/10.1038/srep22419. DOI: https://doi.org/10.1038/srep22419
Saeed, F., Afzaal, M., Niaz, B., Arshad, M. U., Tufail, T., Hussain, M. B., Javed, A. (2018): Bitter melon ( Momordica charantia): A natural healthy vegetable. International Journal of Food Properties 21(1): 1270–1290. https://doi.org/10.1080/10942912.2018.1446023. DOI: https://doi.org/10.1080/10942912.2018.1446023
Joshi, A., Soni, P., Malviya, S., & Kharia, A. (2017): Memory enhancing activity of Momordica charantia by scopolamine induced amnesia in rats. International Journal of Complementary and Advanced Pharmacology 2(1), 11–18.
Mahmood, M.S., Rafique, A., Younas, W., Aslam, B. (2019): Momordica charantia L. (bitter gourd) as a candidate for the control of bacterial and fungal growth. Pakistan Journal of Agricultural Sciences 56(4): 1031–1036. DOI:10.21162/PAKJAS/19.7684. DOI: https://doi.org/10.21162/PAKJAS/19.7684
Graham Noctor., Christine, H., Foyer. (1998): Ascorbate and Glutathione: Keeping Active Oxygen Under Control. Annual Review of Plant Physiology and Plant Molecular Biology. 49: 249-279. doi:10.1146/annurev.arplant.49.1.249. DOI: https://doi.org/10.1146/annurev.arplant.49.1.249
Abdul-Baki, A.A. & Anderson, J.D. (1973) Vigor Determination in Soybean Seed by Multiple Criteria. Crop Science, 13: 630-633. https://doi.org/10.2135/cropsci1973.0011183X001300060013x. DOI: https://doi.org/10.2135/cropsci1973.0011183X001300060013x
Hedge, J.E., Hofreiter, B.T. (1962): In Carbohydrate chemistry 17 (Eds Whistler RL and Be Miller JN). Academic press. New York.
Lowry, O.H., Roseborough, N.J., Farr, A.L., Randall, R.L. (1951): Protein measurement with Folin-phenol reagent. Journal of Biological Chemistry 193: 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6 DOI: https://doi.org/10.1016/S0021-9258(19)52451-6
Sinha, K.A., (1972): Colorimetric assay of catalase. Analytical Biochemistry 47(2): 389-394. doi: 10.1016/0003-2697(72)90132-7. DOI: https://doi.org/10.1016/0003-2697(72)90132-7
Kakkar, P.S., Das, B., Viswanathan, P.N. (1984): A modified spectrophotometeric assay for superoxide dismutase. Indian Journal of Biochemistry and Biophysics 21: 130-132.
Seneviratne, M., Rajakaruna, N., Rizwan, M., Madawala, H.M.S.P., Ok, Y.S., Vithanage, M. (2019): Heavy metal-induced oxidative stress on seed germination and seedling development: A critical review.Environmental Geochemistry and Health 41: 1813-1831.
DOI: 10.1007/s10653-017-0005-8. DOI: https://doi.org/10.1007/s10653-017-0005-8
Pena, L.B., Azpilicueta. C.E., Gallego, S.M. (2011): Sunflower cotyledons cope with copper stress by inducing catalase subunits less sensitive to oxidation. Journal of Trace Elements in Medicine and Biology 25(3):125-9. doi: 10.1016/j.jtemb.2011.05.001. DOI: https://doi.org/10.1016/j.jtemb.2011.05.001
Hira Amin, A., Araina, BA., Jahangirb, TM., Abbasic, A.R., Mangi J, Abbasi, MS., Farah, A. (2019): Copper (Cu) tolerance and accumulation potential in four native plant species:a comparative study for effective phytoextraction technique. Geology, Ecology and Landscapes 5(1): 53-64. DOI:10.1080/24749508.2019.1700671. DOI: https://doi.org/10.1080/24749508.2019.1700671
Marques, D.M., Veroneze, Júnior V., da Silva, A.B., Mantovani, J.R, Magalhães, P.C., de Souza, T.C. (2018): Copper Toxicity on Photosynthetic Responses and Root Morphology of Hymenaea courbaril L. (Caesalpinioideae). Water Air Soil Pollution 229(5): 138. DOI:10.1007/s11270-018-3769-2. DOI: https://doi.org/10.1007/s11270-018-3769-2
Sandeep, K., Pandey. (2008): Germination and Seedling growth of Field Pea Pisum sativum Malviya Matar-15(HUDP-15) and Pusa Prabhat (DDR-23) under varying level of Copper and Chromium. The Journal of American Science 4(3): 28-40.
Baccouch, S., Chaoui, A., Ferjani, E.E. (1998): Nickel Toxicity: Effects on growth and metabolism of maize. Journal of plant nutrition 21(3): 577-588. https://doi.org/10.1080/01904169809365425 DOI: https://doi.org/10.1080/01904169809365425
Jocsak, I., Knolmajer, B., Szarvas, M., Rabnecz, G., Pal-Fam, F. (2022): Literature review on the effects of heavy metal stress and alleviating possibilities through exogenously applied agents in alfalfa (Medicago sativa L.). Plants 11(61):2161. https://doi.org/10.3390/plants11162161. DOI: https://doi.org/10.3390/plants11162161
Gavrilescu, M. (2022) Enhancing phytoremediation of soils polluted with heavy metals. Curr Opin Biotechnol, 74:21–31. https://doi.org/10.1016/j.copbio.2021.10.024. DOI: https://doi.org/10.1016/j.copbio.2021.10.024
Hatami, M., Hosseini, S.M., Ghorbanpour, M., Kariman K. (2019): Physiological and antioxidative responses to GO/PANI nanocomposite in intact and demucilaged seeds and young seedlings of Salvia mirzayanii. Chemosphere 233: 920-935. https://doi.org/10.1016/j.chemosphere.2019.05.268 DOI: https://doi.org/10.1016/j.chemosphere.2019.05.268
Talebi, S., Nabavi Kalat, S.M., Sohani Darban S.L. (2014): The Study Effects of Heavy Metals on Germination Characteristics and Proline Content of Triticale (Triticoseale Wittmack). International Journal of Farming and Allied Sciences 3(10): 1080-1087.
Iqbal, M.Z., Habiba, U., Nayab, S., Shafiq, M. (2018): Effects of Copper on seed germination and seedling growth performance of lense Culinaris Medik. Journal of Plant development 25: 85-90. https://doi.org/10.33628/jpd.2018.25.1.85. DOI: https://doi.org/10.33628/jpd.2018.25.1.85
Vijay, M., Binu, G., Keerthana, S. (2024): Toxicological impacts of mercury on the growth and biochemical profiles of pumpkin (Curcurbita moschata duchesne). World Journal of Advanced Research and Reviews 24(01): 2596-2605. https://doi.org/10.30574/wjarr.2024.24.1.3300. DOI: https://doi.org/10.30574/wjarr.2024.24.1.3300
Dolatabadian, A. (2021): Plant - Microbe Interaction. Biology. 10(1): 15. https://doi.org/10.3390/biology10010015. DOI: https://doi.org/10.3390/biology10010015
Duan, Y., Sangani, C.B., Muddassir, M., Soni, K.V. (2020): Copper, Chromium and Nickel Heavy Metal Effects on Total Sugar and Protein Content in Glycine Max. Research Square 1-20. https://doi.org/10.21203/rs.3.rs-107829/v1. DOI: https://doi.org/10.21203/rs.3.rs-107829/v1
Vijay, M., Premalatha, S., Sevvanthi, G. (2024): Evaluation of Iron induced stress in Brinjal (Solanum Melongena L.) plants by assessing growth and biochemical parameters. Research Review International Journal of Multidisciplinary 9(11): 125-134. https://doi.org/10.31305/rrijm.2024.v09.n11.019 DOI: https://doi.org/10.31305/rrijm.2024.v09.n11.019
Aslam, M., Aslam, A., Sheraz, M., Ali, B., Ulhassan, Z., Najeeb, U., Zhou, W., Gill, R.A. (2021): Lead toxicity in cereals: mechanistic insight into toxicity, mode of action, and management. Frontiers in Plant Science 11: 587785. DOI: 10.3389/fpls.2020.587785. DOI: https://doi.org/10.3389/fpls.2020.587785
Hidangmayum, A., Dwivedi, P., Katiyar, D., Hemantaranjan, A. (2019): Application of chitosan on plant responses with special reference to abiotic stress. Physiology and Molecular Biology of Plants 25:313-326. https://doi.org/10.1007/s12298-018-0633-1. DOI: https://doi.org/10.1007/s12298-018-0633-1
Nabi, R.B.S., Tayade, R., Hussain, A., Kulkarni, K.P., Imran, Q.M., Mun, B.G., Yun, B.W. (2019): Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environmental And Experimental Botany, 161:120-133. https://doi.org/10.1016/j.envexpbot.2019.02.003. DOI: https://doi.org/10.1016/j.envexpbot.2019.02.003
Dat, J.F., Pellinen, R., Beeckman, T., Van de Cotte, B., Langebartels, C., Kangasjarvi, J., Inze, D., & Van Breusegem, F. (2003): Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant Journal 33: 621¬-632. DOI: 10.1046/j.1365-313x.2003.01655.x. DOI: https://doi.org/10.1046/j.1365-313X.2003.01655.x
Bowler, C., Van, Montagu, M., Inze, D. (1992): Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology 43: 83-¬116. http://dx.doi.org/10.1146/annurev.pp.43.060192.000503. DOI: https://doi.org/10.1146/annurev.pp.43.060192.000503
Benavides, M.P., Gallego. SM., & Tomaro, M.L. (2005). Cadmium toxicity in plants. Brazilian Journal of Plant Physiology 17: 21-34. https://doi.org/10.1590/S1677-04202005000100003. DOI: https://doi.org/10.1590/S1677-04202005000100003
Khatun, S., Mohammad Babar, Ali., Eun-Joo, Hahna., Kee-Yoeup Paek. (2008): Copper toxicity in Withania somnifera: Growth and antioxidant enzymes responses of in vitro grown plants. Environmental and Experimental Botany 64: 279-285. https://doi.org/10.1016/j.envexpbot.2008.02.004 DOI: https://doi.org/10.1016/j.envexpbot.2008.02.004
Li, Q., Liu, H., Alattar, M., Jiang, S., Han, J., Ma, Y., & Jiang, C. (2015): The Preferential Accumulation of Heavy Metals in Different Tissues Following Frequent Respiratory Exposure to PM 2.5 in Rats. Scientific Reports 5: 16936. https://doi.org/10.1038/srep16936. DOI: https://doi.org/10.1038/srep16936
Posmyk, M.M., Bałabusta, M., Wieczorek, M., Sliwinska, E., Janas KM. (2009): Melatonin applied to cucumber (Cucumis sativus L.) seeds improves germination during chilling stress. Journal of Pineal Research 46: 214-223. https://doi.org/10.1111/j.1600-079X.2008.00652.x. DOI: https://doi.org/10.1111/j.1600-079X.2008.00652.x
Verma, S., Dubey, R.S. (2003): Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant science 164(4): 645-655. https://doi.org/10.1016/S0168-9452(03)00022-0. DOI: https://doi.org/10.1016/S0168-9452(03)00022-0
Wang, H., Ki, J.S (2020): Molecular identification, differential expression and protective roles of iron/manganese superoxide dismutases in the green algae Closterium ehrenbergii against metal stress. European Journal of Protistology, 74: 125689. https://doi.org/10.1016/j.ejop.2020.125689. DOI: https://doi.org/10.1016/j.ejop.2020.125689
Zhao, Y., Li, Q., Gu, D., Yu, L., Yu, X. (2022): The synergistic effects of gamma-aminobutyric acid and salinity during the enhancement of microalgal lipid production in photobioreactors. Energy Conversion and Management 267: 115928. https://doi.org/10.1016/j.enconman.2022.115928. DOI: https://doi.org/10.1016/j.enconman.2022.115928
Mishra, G., Zhang, W., Deng, F., Zhao, J., Wang, X. (2006): A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science 312:264-266. https://doi.org/10.1126/science.1123769 DOI: https://doi.org/10.1126/science.1123769
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Applied Biological Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
 
						 
							