Eco-friendly bioplastic from Pontederia crassipes: cellulose and carboxymethyl cellulose biopolymers for sustainable, biodegradable bioplastic film
DOI:
https://doi.org/10.71336/jabs.1423Keywords:
Biopolymer, Carboxy methyl cellulose, Cellulose bioplastic, Pontederia crassipesAbstract
Expanded usage of polyethylene film in different industries lead to accumulation of plastics in the environment, which cause pollution and toxicity to life forms. It can be replaced by the bioplastics which are biodegradable, biocompatible, eco-friendly, and can be obtained from renewable sources at low cost such as plant weeds. The biopolymer, cellulose can be extracted from aquatic weeds since they are abundantly available from aquatic system, easy and safe to handle, and biocompatible. Pontederia crassipes an aquatic floating weed, widely dispersed in surface of polluted rivers and ponds. Directed to remove from water bodies by EPA due to its negative impacts on aquatic animal life and the collected biomass as such cannot be used as a feed due to the presence of polyphenols and nitrates. In the current study, about 30% of cellulose was extracted by delignification and bleaching of weed biomass collected from a river. Extracted cellulose was converted into another form of derived polymer, known as carboxy methyl cellulose (CMC) by treating with monochloro acetic acid. Biodegradable bioplastic was prepared using gelatin as gelling agent and glycerol as plasticizer by varying concentrations. Properties of the extracted cellulose, CMC, and bioplastic from cellulose and CMC, were analyzed by measuring film thickness, tensile strength, elongation point, FTIR, and antioxidant assay. About 25.7 µm thickness cellulose biofilm exhibited higher tensile strength of 55.3 MPa at dry, 45.5 MPa at wet condition and 24 µg/ml of antioxidant activity was observed. This research highlights the potential of utilizing water hyacinth, a typically problematic weed, to develop sustainable biopolymers that address the growing environmental concerns associated with conventional plastic waste. Thus, this research work provides a potential biological safe approach to prepare bioplastic film for commercial applications. While, gelatin is costly, a suitable, cheap alternative need to be identified to reduce the cost of production of the bioplastic film. However, further efforts are required to enhance the scalability of the product.
References
Evode, N., Qamar, S. A., Bilal, M., Barceló, D., & Iqbal, H. M. (2021). Plastic waste and its management strategies for environmental sustainability. Case Studies in Chemical and Environmental Engineering, 4, 100142. https://doi.org/10.1016/j.cscee.2021.100142 DOI: https://doi.org/10.1016/j.cscee.2021.100142
Chen, Y., Awasthi, A. K., Wei, F., Tan, Q., & Li, J. (2020). Single-use plastics: Production, usage, disposal, and adverse impacts. The Science of the Total Environment, 752, 141772. https://doi.org/10.1016/j.scitotenv.2020.141772 DOI: https://doi.org/10.1016/j.scitotenv.2020.141772
Mohanan N, Montazer Z, Sharma P K, Levin D B (2020). Microbial and enzymatic degradation of synthetic plastics. Frontiers in . Microbiology. 11, 580709. https://doi.org/10.3389/fmicb.2020.580709 DOI: https://doi.org/10.3389/fmicb.2020.580709
Navasingh, R. J. H., Gurunathan, M. K., Nikolova, M. P., & Królczyk, J. B. (2023). Sustainable Bioplastics for Food Packaging Produced from Renewable Natural Sources. Polymers, 15(18), 3760. https://doi.org/10.3390/polym15183760 DOI: https://doi.org/10.3390/polym15183760
Omar, B. A., Elmasry, R., Eita, A., Soliman, M. M., El-Tahan, A. M., & Sitohy, M. (2021). Upgrading the preparation of high-quality chitosan from Procambarus clarkii wastes over the traditional isolation of shrimp chitosan. Saudi Journal of Biological Sciences, 29(2), 911–919. https://doi.org/10.1016/j.sjbs.2021.10.014
Onyeaka, P. O., Dai, H., Feng, X., Wang, H., Fu, Y., Yu, Y., Zhu, H., Chen, H., Ma, L., & Zhang, Y. (2023). Effect of different types of nanocellulose on the structure and properties of gelatin films. Food Hydrocolloids, 144, 108972. https://doi.org/10.1016/j.foodhyd.2023.108972 DOI: https://doi.org/10.1016/j.foodhyd.2023.108972
Aziz, T., Farid, A., Haq, F., Kiran, M., Ullah, A., Zhang, K., Li, C., Ghazanfar, S., Sun, H., Ullah, R., Ali, A., Muzammal, M., Shah, M., Akhtar, N., Selim, S., Hagagy, N., Samy, M., & Jaouni, S. K. A. (2022). A Review on the Modification of Cellulose and Its Applications. Polymers, 14(15), 3206. https://doi.org/10.3390/polym14153206 DOI: https://doi.org/10.3390/polym14153206
Mahmud, M. A., & Anannya, F. R. (2021). Sugarcane bagasse - A source of cellulosic fiber for diverse applications. Heliyon, 7(8), e07771. https://doi.org/10.1016/j.heliyon.2021.e07771 DOI: https://doi.org/10.1016/j.heliyon.2021.e07771
Rajanna, M., Shivashankar, L. M., Shivamurthy, O. H., Ramachandrappa, S. U., Betageri, V. S., Shivamallu, C., Shetty, R. H. L., Kumar, S., Amachawadi, R. G., & Kollur, S. P. (2022). A Facile Synthesis of Cellulose Nanofibers from Corn Cob and Rice Straw by Acid Hydrolysis Method. Polymers, 14(20), 4383. https://doi.org/10.3390/polym14204383 DOI: https://doi.org/10.3390/polym14204383
Karouach, F, Ben Bakrim W, Ezzariai, A, Sobeh, M, Kibret, M, Yasri, A, Kouisni, L (2022). A comprehensive evaluation of the existing approaches for controlling and managing the proliferation of water hyacinth (Eichhornia crassipes). Frontiers in Environmental Science., 9, 767871. https://doi.org/10.3389/fenvs.2021.767871 DOI: https://doi.org/10.3389/fenvs.2021.767871
Omar, B. A., Elmasry, R., Eita, A., Soliman, M. M., El-Tahan, A. M., & Sitohy, M. (2021). Upgrading the preparation of high-quality chitosan from Procambarus clarkii wastes over the traditional isolation of shrimp chitosan. Saudi Journal of Biological Sciences, 29(2), 911–919. https://doi.org/10.1016/j.sjbs.2021.10.014 DOI: https://doi.org/10.1016/j.sjbs.2021.10.014
Sayago U F C, (2021). Design and development of a biotreatment of E. crassipes for the decontamination of water with Chromium (VI). Scientific Reports., 11(1), 9326. https://doi.org/10.1038/s41598-021-88261-0 DOI: https://doi.org/10.1038/s41598-021-88261-0
Ratnani, R. D., Arianti, F. D., & Sasongko, N. A. (2024). Exploring the potential of water hyacinth weed (Pontederia crassipes) as an environmentally friendly antifungal to realize sustainable development in lakes: A review. Case Studies in Chemical and Environmental Engineering, 9, 100702. https://doi.org/10.1016/j.cscee.2024.100702 DOI: https://doi.org/10.1016/j.cscee.2024.100702
Abba, A., & Sankarannair, S. (2024). Global impact of water hyacinth (Eichhornia Crassipes) on rural communities and mitigation strategies: a systematic review. Environmental Science and Pollution Research, 31(31), 43616–43632. https://doi.org/10.1007/s11356-024-33905-7 DOI: https://doi.org/10.1007/s11356-024-33905-7
Rahayu A, Hanum, F F, Amrillah N A Z, Lim L W, Salamah S (2022). Cellulose extraction from coconut coir with alkaline delignification process. Journal of fibers and polymer composites, 1(2), 106-116. https://doi.org/10.55043/jfpc.v1i2.51 DOI: https://doi.org/10.55043/jfpc.v1i2.51
Santhosh A S, Umesh M, Kariyadan S, Suresh S, Salmen S H, Alharb S A, Shanmugam S (2024). Fabrication of biopolymeric sheets using cellulose extracted from water hyacinth and its application studies for reactive red dye removal. Environmental Research., 240, 117466. https://doi.org/10.1016/j.envres.2023.117466 DOI: https://doi.org/10.1016/j.envres.2023.117466
Bessa, B. G., Santos, H. P. D., Murakami, V. T., Fantim, W. M., De Carvalho Bergamo, Y., & De Araújo Morandim-Giannetti, A. (2021). Synthesis of carboxymethylcellulose from corn straw waste: comparison between pre-treatments with sodium hydroxide and low-cost ionic liquid. Iranian Polymer Journal, 31(3), 357–366. https://doi.org/10.1007/s13726-021-00996-9 DOI: https://doi.org/10.1007/s13726-021-00996-9
Pan L, Li P, Tao Y (2020). Preparation and properties of microcrystalline cellulose/fish gelatin composite film. Materials, 13(19), 4370. https://doi.org/10.3390/ma13194370 DOI: https://doi.org/10.3390/ma13194370
Nigam, S., Das, A. K., & Patidar, M. K. (2021). Synthesis, characterization and biodegradation of bioplastic films produced from Parthenium hysterophorus by incorporating a plasticizer (PEG600). Environmental Challenges, 5, 100280. https://doi.org/10.1016/j.envc.2021.100280 DOI: https://doi.org/10.1016/j.envc.2021.100280
Benitez, J. J., Florido-Moreno, P., Porras-Vázquez, J. M., Tedeschi, G., Athanassiou, A., Heredia-Guerrero, J. A., & Guzman-Puyol, S. (2024). Transparent, plasticized cellulose-glycerol bioplastics for food packaging applications. International Journal of Biological Macromolecules, 273, 132956. https://doi.org/10.1016/j.ijbiomac.2024.132956 DOI: https://doi.org/10.1016/j.ijbiomac.2024.132956
Packiam K K, Murugesan B, Kaliyannan Sundaramoorthy P M, Srinivasan H, Dhanasekaran K (2022). Extraction, purification and characterization of nanocrystalline cellulose from Eichhornia crassipes (Mart.) solms: a common aquatic weed water hyacinth. Journal of natural fibers, 19(14), 7424-7435. https://doi.org/10.1080/15440478.2021.1946886 DOI: https://doi.org/10.1080/15440478.2021.1946886
Siddiqui, M. N., Redhwi, H. H., Tsagkalias, I., Vouvoudi, E. C., & Achilias, D. S. (2021). Development of Bio-Composites with Enhanced Antioxidant Activity Based on Poly (lactic acid) with Thymol, Carvacrol, Limonene, or Cinnamaldehyde for Active Food Packaging. Polymers, 13(21), 3652. https://doi.org/10.3390/polym13213652 DOI: https://doi.org/10.3390/polym13213652
Wu Z, Peng K, Zhang, Y, Wang M, Yong, C, Chen, L, Pan, M (2022). Lignocellulose dissociation with biological pretreatment towards the biochemical platform: A review. Materials Today Bio, 16, 100445. https://doi.org/10.1016/j.mtbio.2022.100445 DOI: https://doi.org/10.1016/j.mtbio.2022.100445
Umesh M, Santhosh A S, Shanmugam S, Thazeem B, Alharbi S A, Almoallim H S, Pugazhendhi A. (2022). Extraction, characterization, and fabrication of cellulose biopolymer sheets from Pistia stratiotes as a biodegradative coating material: a unique strategy for the conversion of invasive weeds into value-added productsJ. Journal of polymers and the environment 30(12), 5057-5068. https://doi.org/10.1007/s10924-022-02511-4 DOI: https://doi.org/10.1007/s10924-022-02511-4
Ayanda, O. I., Ajayi, T., & Asuwaju, F. P. (2020). Eichhornia crassipes (Mart.) Solms: Uses, Challenges, Threats, and Prospects. The Scientific World Journal, 2020, 3452172. https://doi.org/10.1155/2020/3452172 DOI: https://doi.org/10.1155/2020/3452172
Putri R D A, Bintang C A, Pangestu D B, Handayani, P A (2020). Modification of carboxymethyl cellulose from water hyacinth (Eichornia crassipes) using the succinic acid crosslinking method. In Journal of Physics: Conference Series (Vol. 1444, No. 1, p. 012009). IOP Publishing. https://doi.org/10.1088/1742-6596/1444/1/012009 DOI: https://doi.org/10.1088/1742-6596/1444/1/012009
Rather J A, Akhter N, Ashraf Q S, Mir S A, Makroo H A, Majid D, Dar B N (2022). A comprehensive review on gelatin: Understanding impact of the sources, extraction methods, and modifications on potential packaging applications. Food Package. Shelf Life, 34, 100945. https://doi.org/10.1016/j.fpsl.2022.100945 DOI: https://doi.org/10.1016/j.fpsl.2022.100945
Nguyen, T A, Nguyen, X C (2022). Bacterial Cellulose‐Based Biofilm Forming Agent Extracted from Vietnamese Nata‐de‐Coco Tree by Ultrasonic Vibration Method: Structure and Properties. Journal of chemistry., 2022(1), 7502796. https://doi.org/10.1155/2022/7502796 DOI: https://doi.org/10.1155/2022/7502796
Salim, R. M., Asik, J., & Sarjadi, M. S. (2021). Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark. Wood Science and Technology, 55(2), 295–313. https://doi.org/10.1007/s00226-020-01258-2 DOI: https://doi.org/10.1007/s00226-020-01258-2
Pirsa S, Farshchi E, Roufegarinejad L (2020). Antioxidant/antimicrobial film based on carboxymethyl cellulose/gelatin/TiO 2–Ag nano-composite. Journal of Polymers and the environment., 28, 3154-3163. https://doi.org/10.1007/s10924-020-01846-0 DOI: https://doi.org/10.1007/s10924-020-01846-0
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Applied Biological Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.