Characterization and optimization of glutaminase enzyme from Bacillus albus isolated from agriculture waste

Authors

DOI:

https://doi.org/10.71336/jabs.1427

Keywords:

Glutaminase enzyme, Optimization, Bacillus albus, Agriculture waste, SDS-PAGE

Abstract

Glutaminase is an enzyme that catalyzes the hydrolysis of glutamine to ammonia and glutamate. Although it can be isolated from bacteria, fungi, plants, and animals, microorganisms remain the preferred source due to their biochemical diversity and ease of cultivation. In this study, 34 soil samples were collected from agricultural waste areas in district Kohat to isolate glutaminase-producing bacteria. Primary screening using phenol red indicator and subsequent biochemical characterization identified 10 positive isolates (30% positivity rate). Among these, four representative strains (A1, G2, P3, and 1R) were selected for detailed analysis, with the majority belonging to the Bacillus genus. Optimal enzyme activity was observed at neutral pH (7.0) and 37°C. SDS-PAGE (12%) analysis was used to estimate the molecular weight of the purified glutaminase. 16S rRNA gene sequencing identified isolate A1 as Bacillus albus, isolates G2 and P3 as closely related to Bacillus anthracis, and isolate 1R as Alkalibacillus bogoriensis. Phylogenetic analysis revealed that Alkalibacillus bogoriensis (1R) clustered distinctly from other Bacillus species. Among all isolates, Bacillus albus demonstrated the highest glutaminase activity, showing good pH and temperature stability. These findings suggest that the isolated strains, particularly Bacillus albus, have potential for future pilot-scale studies and industrial applications in glutaminase production.

References

Nandakumar, R., Yoshimune, K., Wakayama, M., & Moriguchi, M. (2003). Microbial glutaminase: biochemistry, molecular approaches and applications in the food industry. Journal of Molecular Catalysis B: Enzymatic, 23(2-6), 87-100. https://doi.org/10.1016/S1381-1177(03)00075-4 DOI: https://doi.org/10.1016/S1381-1177(03)00075-4

Chandra, P., Enespa, Singh, R., & Arora, P. K. (2020). Microbial lipases and their industrial applications: a comprehensive review. Microbial cell factories, 19, 1-42. https://doi.org/10.1186/s12934-020-01428-8. DOI: https://doi.org/10.1186/s12934-020-01428-8

Amobonye, A., Singh, S., & Pillai, S. (2019). Recent advances in microbial glutaminase production and applications—a concise review. Critical reviews in biotechnology, 39(7), 944-963. https://doi.org/10.1080/07388551.2019.1640659

Mostafa, Y. S., Alamri, S. A., Alfaifi, M. Y., Alrumman, S. A., Elbehairi, S. E. I., Taha, T. H., & Hashem, M. (2021). L-glutaminase synthesis by marine Halomonas meridiana isolated from the red sea and its efficiency against colorectal cancer cell lines. Molecules, 26(7), 1963. https://doi.org/10.3390/molecules26071963. DOI: https://doi.org/10.3390/molecules26071963

Ramya, L. N., Doble, M., Rekha, V. P. B., & Pulicherla, K. K. (2012). L-Asparaginase as potent anti-leukemic agent and its significance of having reduced glutaminase side activity for better treatment of acute lymphoblastic leukaemia. Applied biochemistry and biotechnology, 167, 2144-2159. https://doi.org/10.1007/s12010-012-9755-z DOI: https://doi.org/10.1007/s12010-012-9755-z

Jiang, J., Srivastava, S., & Zhang, J. (2019). Starve cancer cells of glutamine: break the spell or make a hungry monster?. Cancers, 11(6), 804. https://doi.org/10.3390/cancers11060804 DOI: https://doi.org/10.3390/cancers11060804

Bülbül, D., & Karakuş, E. (2013). Production and optimization of L-glutaminase enzyme from Hypocrea jecorina pure culture. Preparative Biochemistry and Biotechnology, 43(4), 385-397. https://doi.org/10.1080/10826068.2012.741641 DOI: https://doi.org/10.1080/10826068.2012.741641

Tork, S. E., Aly, M. M., & Elsemin, O. (2018). A new l-glutaminase from Streptomyces pratensis NRC 10: Gene identification, enzyme purification, and characterization. International journal of biological macromolecules, 113, 550-557. https://doi.org/10.1016/j.ijbiomac.2018.02.080 DOI: https://doi.org/10.1016/j.ijbiomac.2018.02.080

Pandian, S. R. K., Deepak, V., Sivasubramaniam, S. D., Nellaiah, H., & Sundar, K. (2014). Optimization and purification of anticancer enzyme L-glutaminase from Alcaligenes faecalis KLU102. Biologia, 69, 1644-1651. https://doi.org/10.2478/s11756-014-0486-1 DOI: https://doi.org/10.2478/s11756-014-0486-1

Barrios-González, J. (2012). Solid-state fermentation: physiology of solid medium, its molecular basis and applications. Process Biochemistry, 47(2), 175-185. https://doi.org/10.1016/j.procbio.2011.11.016 DOI: https://doi.org/10.1016/j.procbio.2011.11.016

Saleem, R., & Ahmed, S. (2020). Isolation and characterization of L-glutaminase producing bacteria. bioRxiv, 2020-10. https://doi.org/10.1101/2020.10.28.358838 DOI: https://doi.org/10.1101/2020.10.28.358838

Amobonye, A., Singh, S., & Pillai, S. (2019). Recent advances in microbial glutaminase production and applications—a concise review. Critical reviews in biotechnology, 39(7), 944-963. https://doi.org/10.1080/07388551.2019.1640659

Amobonye, A., Singh, S., & Pillai, S. (2019). Recent advances in microbial glutaminase production and applications—a concise review. Critical reviews in biotechnology, 39(7), 944-963. https://doi.org/10.1080/07388551.2019.1640659 DOI: https://doi.org/10.1080/07388551.2019.1640659

Unissa, R., Sudhakar, M., Reddy, A. S. K., & Sravanthi, K. N. (2014). A review on biochemical and therapeutic aspects of glutaminase. International Journal of Pharmaceutical Science and Research, 5(11), 4617-4634. http://dx.doi.org/10.13040/IJPSR.0975-8232.5(11).4617-34 DOI: https://doi.org/10.13040/IJPSR.0975-8232.5(11).4617-34

Freire, R. K. B., Mendonça, C. M. N., Ferraro, R. B., Moguel, I. S., Tonso, A., Lourenço, F. R., Santos, J.H.P.M., Sette, L.D. and Pessoa Junior, A. (2021). Glutaminase-free L-asparaginase production by Leucosporidium muscorum isolated from Antarctic marine-sediment. Preparative Biochemistry & Biotechnology, 51(3), 277-288. https://doi.org/10.1080/10826068.2020.1815053 DOI: https://doi.org/10.1080/10826068.2020.1815053

Barzkar, N., Sohail, M., Tamadoni Jahromi, S., Nahavandi, R., & Khodadadi, M. (2021). Marine microbial L-glutaminase: From pharmaceutical to food industry. Applied Microbiology and Biotechnology, 105(11), 4453-4466.

https://doi.org/10.1007/s00253-021-11356-1

Barzkar, N., Sohail, M., Tamadoni Jahromi, S., Nahavandi, R., & Khodadadi, M. (2021). Marine microbial L-glutaminase: From pharmaceutical to food industry. Applied Microbiology and Biotechnology, 105(11), 4453-4466. https://doi.org/10.1007/s00253-021-11356-1 DOI: https://doi.org/10.1007/s00253-021-11356-1

Gomaa, E. Z. (2022). Production, characterization, and antitumor efficiency of l-glutaminase from halophilic bacteria. Bulletin of the National Research Centre, 46(1), 10. https://doi.org/10.1186/s42269-021-00693-w

Binod, P., Sindhu, R., Madhavan, A., Abraham, A., Mathew, A. K., Beevi, U. S., Sukumaran, R.K., Singh, S.P. and Pandey, A. (2017). Recent developments in l-glutaminase production and applications–An overview. Bioresource technology, 245, 1766-1774. https://doi.org/10.1016/j.biortech.2017.05.059 DOI: https://doi.org/10.1016/j.biortech.2017.05.059

Basso, A., & Serban, S. (2019). Industrial applications of immobilized enzymes—A review. Molecular Catalysis, 479, 110607. https://doi.org/10.1016/j.mcat.2019.110607 DOI: https://doi.org/10.1016/j.mcat.2019.110607

Sadhu, S., Ghosh, P. K., Aditya, G., & Maiti, T. K. (2014). Optimization and strain improvement by mutation for enhanced cellulase production by Bacillus sp.(MTCC10046) isolated from cow dung. Journal of King Saud University-Science, 26(4), 323-332. https://doi.org/10.1016/j.jksus.2014.06.001 DOI: https://doi.org/10.1016/j.jksus.2014.06.001

Mao, S., Jiang, J., Xiong, K., Chen, Y., Yao, Y., Liu, L., ... & Li, X. (2024). Enzyme Engineering: Performance Optimization, Novel Sources, and Applications in the Food Industry. Foods, 13(23), 3846. https://doi.org/10.3390/foods13233846 DOI: https://doi.org/10.3390/foods13233846

Tallur, P. N., Sajjan, D. B., Mulla, S. I., Talwar, M. P., Pragasam, A., Nayak, V. M., Ninnekar, H.Z. and Bhat, S. S. (2016). Characterization of antibiotic resistant and enzyme producing bacterial strains isolated from the Arabian Sea. 3 Biotech, 6, 1-11. https://doi.org/10.1007/s42690-023-01049-9 DOI: https://doi.org/10.1007/s13205-015-0332-3

Tang, Y. W., Stratton, C. W., & Aslanzadeh, J. (2006). Biochemical profile-based microbial identification systems. Advanced techniques in diagnostic microbiology, 84-116. https://doi.org/10.1007/0-387-32892-0_6 DOI: https://doi.org/10.1007/0-387-32892-0_6

Baltz, R. H., Demain, A. L., & Davies, J. E. (Eds.). (2010). Manual of industrial microbiology and biotechnology. American Society for Microbiology Press. https://doi.org/10.1007/978-981-97-9582-6 DOI: https://doi.org/10.1128/9781555816827

Jozala, A. F., Geraldes, D. C., Tundisi, L. L., Feitosa, V. D. A., Breyer, C. A., Cardoso, S. L., Mazzola, P.G., Oliveira-Nascimento, L.D., Rangel-Yagui, C.D.O., Magalhães, P.D.O. and Oliveira, M.A.D. (2016). Biopharmaceuticals from microorganisms: from production to purification. brazilian journal of microbiology, 47, 51-63. https://doi.org/10.1016/j.bjm.2016.10.007 DOI: https://doi.org/10.1016/j.bjm.2016.10.007

Kumar, S., Dasu, V. V., & Pakshirajan, K. (2011). Purification and characterization of glutaminase-free L-asparaginase from Pectobacterium carotovorum MTCC 1428. Bioresource technology, 102(2), 2077-2082. https://doi.org/10.1016/j.biortech.2010.07.114 DOI: https://doi.org/10.1016/j.biortech.2010.07.114

Johar, V., Singh, N., Alaklabi, A., & Khan, S. (2024). Rapid and efficient isolation of genomic DNA from Okra (Abelmoschus esculentus L.): A streamlined alternative to conventional methods. Environment Conservation Journal, 25(4), 1172-1179. https://doi.org/10.36953/ECJ.27652839 DOI: https://doi.org/10.36953/ECJ.27652839

Giovannoni, M., Gramegna, G., Benedetti, M., & Mattei, B. (2020). Industrial use of cell wall degrading enzymes: the fine line between production strategy and economic feasibility. Frontiers in bioengineering and biotechnology, 8, 356. https://doi.org/10.3389/fbioe.2020.00356 DOI: https://doi.org/10.3389/fbioe.2020.00356

Gomaa, E. Z. (2022). Production, characterization, and antitumor efficiency of l-glutaminase from halophilic bacteria. Bulletin of the National Research Centre, 46(1), 10. https://doi.org/10.1186/s42269-021-00693-w DOI: https://doi.org/10.1186/s42269-021-00693-w

Abd-Alla, M. H., El-Sayed, E. S. A., & Rasmey, A. H. M. (2013). Biosynthesis of L-glutaminase by Streptomyces variabilis ASU319 isolated from rhizosphere of triticum vulgaris. Universal Journal of Microbiology Research, 1, 27-35. DOI: 10.13189/ujmr.2013.010301 DOI: https://doi.org/10.13189/ujmr.2013.010301

Reda, F. M. (2015). Kinetic properties of Streptomyces canarius L-Glutaminase and its anticancer efficiency. Brazilian Journal of Microbiology, 46, 957-968. https://doi.org/10.1590/S1517-838246420130847 DOI: https://doi.org/10.1590/S1517-838246420130847

Abdelhameed, A., Alqaysi, R., Hilal, H. A., & Alharbi, N. (2020). Purification of L-Glutaminase from Bacillus sp. B12 and study its properties. Indian Journal of Forensic Medicine & Toxicology, 14(2), 1160-1166.

Wardah, Z. H., Chaudhari, H. G., Prajapati, V., & Raol, G. G. (2023). Application of statistical methodology for the optimization of l-glutaminase enzyme production from Streptomyces pseudogriseolus ZHG20 under solid-state fermentation. Journal of Genetic Engineering and Biotechnology, 21(1), 138. https://doi.org/10.1186/s43141-023-00618-2 DOI: https://doi.org/10.1186/s43141-023-00618-2

Ziaei-Nejad, S., Rezaei, M. H., Takami, G. A., Lovett, D. L., Mirvaghefi, A. R., & Shakouri, M. (2006). The effect of Bacillus spp. bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus. Aquaculture, 252(2-4), 516-524. https://doi.org/10.1016/j.aquaculture.2005.07.021 DOI: https://doi.org/10.1016/j.aquaculture.2005.07.021

Brown, G., Singer, A., Proudfoot, M., Skarina, T., Kim, Y., Chang, C., Dementieva, I., Kuznetsova, E., Gonzalez, C.F., Joachimiak, A. and Savchenko, A. (2008). Functional and structural characterization of four glutaminases from Escherichia coli and Bacillus subtilis. Biochemistry, 47(21), 5724-5735. https://doi.org/10.1021/bi800097h DOI: https://doi.org/10.1021/bi800097h

Martín-Rufián, M., Tosina, M., Campos-Sandoval, J. A., Manzanares, E., Lobo, C., Segura, J. A., ... & Márquez, J. (2012). Mammalian glutaminase Gls2 gene encodes two functional alternative transcripts by a surrogate promoter usage mechanism. Public Library of Science One, 7(6), e38380. https://doi.org/10.1371/journal.pone.0038380 DOI: https://doi.org/10.1371/journal.pone.0038380

Porwal, S., Lal, S., Cheema, S., & Kalia, V. C. (2009). Phylogeny in aid of the present and novel microbial lineages: diversity in Bacillus. Public Library of Science One, 4(2), e4438. https://doi.org/10.1371/journal.pone.0004438 DOI: https://doi.org/10.1371/journal.pone.0004438

Kubo, Y., Rooney, A. P., Tsukakoshi, Y., Nakagawa, R., Hasegawa, H., & Kimura, K. (2011). Phylogenetic analysis of Bacillus subtilis strains applicable to natto (fermented soybean) production. Applied and Environmental Microbiology, 77(18), 6463-6469. https://doi.org/10.1128/AEM.00448-11 DOI: https://doi.org/10.1128/AEM.00448-11

Fachrial, E., Krisdianilo, V., Harmileni, H., Lister, I. N. E., Nugroho, T. T., & Saryono, S. (2021). Isolation, characterization, activity test and molecular identification of thermophilic bacteria producing proteases from Dolok Tinggi Raja Natural Hot Springs, North Sumatra, Indonesia. Biodiversitas Journal of Biological Diversity, 22(4). https://doi.org/10.13057/biodiv/d220416 DOI: https://doi.org/10.13057/biodiv/d220416

Wang, A., & Ash, G. J. (2015). Whole genome phylogeny of Bacillus by feature frequency profiles (FFP). Scientific reports, 5(1), 13644. https://doi.org/10.1038/srep13644 DOI: https://doi.org/10.1038/srep13644

Alcaraz, L. D., Moreno-Hagelsieb, G., Eguiarte, L. E., Souza, V., Herrera-Estrella, L., & Olmedo, G. (2010). Understanding the evolutionary relationships and major traits of Bacillus through comparative genomics. BioMed Central genomics, 11, 1-17. https://doi.org/10.1186/1471-2164-11-332 DOI: https://doi.org/10.1186/1471-2164-11-332

Desai, S. S., Chopra, S. J., & Hungund, B. S. (2016). Production, purification and characterization of L-Glutaminase from Streptomyces sp. isolated from soil. Journal of Applied Pharmaceutical Science, 6(7), 100-105. DOI: https://doi.org/10.7324/JAPS.2016.60715 DOI: https://doi.org/10.7324/JAPS.2016.60715

Saleem, R., & Ahmed, S. (2021). Characterization of a New L-Glutaminase Produced by Achromobacter xylosoxidans RSHG1, Isolated from an Expired Hydrolyzed L-Glutamine Sample. Catalysts, 11(11), 1262. https://doi.org/10.3390/catal11111262 DOI: https://doi.org/10.3390/catal11111262

Downloads

Published

2025-05-29

How to Cite

Ullah, H. ., Khan, F. ., Khan, M. S., Khan, N., Ali, I., Muhammad, Y. ., … Ullah, W. (2025). Characterization and optimization of glutaminase enzyme from Bacillus albus isolated from agriculture waste . Journal of Applied Biological Sciences, 19(2), 130–140. https://doi.org/10.71336/jabs.1427

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.