Exploration of microalgae for novel functional food ingredients through isolation, cultivation, and metabolite enhancement

Authors

  • Manisha B. Bachchhav Sinhgad College of Science, Department of Biotechnology, Pune, India 2All India Shri Shivaji Memorial Society’s College of Engineering, Department of Mechanical Engineering, Pune, India https://orcid.org/0000-0001-7857-5603
  • Bhanudas Bachchhav All India Shri Shivaji Memorial Society’s College of Engineering, Department of Mechanical Engineering, Pune, India https://orcid.org/0000-0002-7409-4746

DOI:

https://doi.org/10.71336/jabs.1440

Keywords:

Arthrospira sp., β-carotene, Cultivation, Microalgae, Phycocyanin.

Abstract

Microalgae have been explored as a remarkable and vast natural source of unique health-promoting foods ingredients. Because of the continuously increasing demand for functional foods, it is essential to identify new, suitable ingredients for use in the food industry. The aim of this research is to isolate and optimize the cultivation conditions of microalgae and cyanobacteria from diverse aquatic environments to enhance the yield of valuable bioactive compounds for use as food additives. Thirty samples were collected from various water sources, including dams, rivers, lakes, the sea, and the Lonar lake which is one of the rare basaltic meteorite impact craters in the world. A total of nine strains were isolated, including four strains of Chlorella, two of Chlorococcum, and one each of Geitlerima, Scenedesmus and Arthrospira. The selected strains were further studied for cultivation under different conditions (such as autotrophic, mixotrophic, autotrophic using LEDs, and mixotrophic using LEDs) and for the extraction of metabolites like phycocyanin and β-carotene. The highest protein yield (47.9%) and lipid content (4.20%) were observed in Arthrospira sp. The results show that Arthrospira sp. contains sufficient biomass, protein, and lipids to be a valuable resource. As a tropical country, India boasts a rich diversity of cyanobacterial resources with significant potential for commercial exploration in natural product development.

Author Biography

Bhanudas Bachchhav, All India Shri Shivaji Memorial Society’s College of Engineering, Department of Mechanical Engineering, Pune, India

Department of Mechanical Engineering, Pune, India

References

Pulz O., Gross W. (2004): Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology. 65: 635–648. https://pubmed.ncbi.nlm.nih.gov/15300417/ DOI: https://doi.org/10.1007/s00253-004-1647-x

Gouveia L., Nobre B. P., Marcelo F. M., Mrejen S., Cardoso M. T., Palavra A. F., Mendes R. L. (2007): Functional food oil colored by pigments extracted from microalgae with supercritical CO2. Food Chemistry. 101: 717–723. https://doi.org/10.1016/j.foodchem.2006.02.027 DOI: https://doi.org/10.1016/j.foodchem.2006.02.027

Chisti Y. (2008): Biodiesel from microalgae beats bioethanol. Trends in Biotechnology, 26: 126–131. https://doi.org/10.1016/j.tibtech.2007.12.002 DOI: https://doi.org/10.1016/j.tibtech.2007.12.002

Glazer A. N., Stryer L. (1984): Phycoflur probes. Trends in Biochemical Science. 9: 423–427. DOI: https://doi.org/10.1016/0968-0004(84)90146-4

Eriksen N. T. (2008): Production of phycocyanin - A pigment with applications in biology, biotechnology, foods and medicine. Applied Microbiology and Biotechnology. 80: 1-14. https://link.springer.com/article/10.1007/s00253-008-1542-y DOI: https://doi.org/10.1007/s00253-008-1542-y

Kuddus M., Singh P., Thomas G., Al-Hazimi A. (2013): Recent developments in production and biotechnological applications of c-phycocyanin. BioMed Research International. 1-9. https://doi.org/10.1155/2013/742859 DOI: https://doi.org/10.1155/2013/742859

Dey S., Rathod V. K., Ultrasound assisted extraction of β-carotene from Spirulina platensis. Ultrasonics Sonochemistry. 20: 271–276. https://doi.org/10.1016/j.ultsonch.2012.05.010 DOI: https://doi.org/10.1016/j.ultsonch.2012.05.010

Lee S. Y., Cho J. M., Chang Y. K., Oh Y. K. (2017): Cell disruption and lipid extraction for microalgal biorefineries: a review. Bioresourse Technology 244: 317–328. https://doi.org/10.1016/j.biortech.2017.06.038 DOI: https://doi.org/10.1016/j.biortech.2017.06.038

Bachchhav M. B., Kulkarni M.V., Ingale A. G. (2017): Enhanced Phycocyanin Production from Spirulina plantesis Using Light Emitting Diode. Journal of Inst. Eng. India. Ser E. 98: 41-45. https://doi.org/10.1007/s40034-016-0090-8 DOI: https://doi.org/10.1007/s40034-016-0090-8

Seo Y. C., Choi W. S., Park J. H., Park J. O., Jung K. H., Lee H. Y. (2013): Stable isolation of phycocyanin from Spirulina platensis associated with high-pressure extraction process. International Journal of Molecular Sciences. 14: 1778–1787. https://doi.org/10.3390/ijms14011778 DOI: https://doi.org/10.3390/ijms14011778

Varfolomeev S. D., Wasserman L. A. (2011): Microalgae as Source of Biofuel, Food, Fodder, and Medicines. Applied biochemistry and microbiology. 47: 789-806. https://doi.org/10.1134/S0003683811090079 DOI: https://doi.org/10.1134/S0003683811090079

Guedes A. C., Amaro H. M., Malcata F.X. 2011. Microalgae as sources of carotenoids. Marine Drugs. 9: 625–644. https://doi.org/10.3390/md9040625 DOI: https://doi.org/10.3390/md9040625

Mathimani T., Pugazhendhi A. (2019): Utilization of algae for biofuel, bio-products and bio-remediation. Biocatalysis and Agricultural Biotechnology. 17: 326-330. https://doi.org/10.1016/j.bcab.2018.12.007 DOI: https://doi.org/10.1016/j.bcab.2018.12.007

Chakaravarthy I. (2009): Conservation and management for the Lonar crater Lake Maharashtra, India. Asian, South Heritage. Journal of Tourism. 2: 111-118. See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/319102017

Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. (2013): MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Bio. Evolutionary. 30: 2725–2729. https://doi.org/10.1093/molbev/mst197 DOI: https://doi.org/10.1093/molbev/mst197

Desikacharya V. T., (1959): Monograph in India, Indian council of Agricultural Research, 1st edition. New Delhi, India. 187-215.

Wehr J. D., Sheath R. G. (2003): Freshwater algae of North America, (Elseveir publication). 131-140. DOI: https://doi.org/10.1016/B978-012741550-5/50006-4

Komarek J., (2008): Cyanoprokaryota (Chroococcales), Springer Specktrum, 343-350.

Contreras-Martel C., Matamala A., Bruna C., Poo-Caamano G., Almonacid D., Figueroa M., Martínez-Oyanedel J . Bunster M. (2007): The structure at 2 Å resolution of phycocyanin from Gracilariachilensis and the energy transfer network in a PC-PC complex. Biophysical Chemistry. 125: 388–396. https://doi.org/10.1016/j.bpc.2006.09.014 DOI: https://doi.org/10.1016/j.bpc.2006.09.014

Hemlata, Fatma T. (2009): Screening of cyanobacteria for phycobiliproteins and effect of different environmental stress on its yield. Bulletin of Environmental Contamination and Toxicology. 83: 509–515. https://doi.org/10.1007/s00128-009-9837-y DOI: https://doi.org/10.1007/s00128-009-9837-y

Solymosi K., Keresztes A. (2012): Plastid structure, diversification and interconversions II. land plants. Current Chem. Biology. 6: 187-204. http://dx.doi.org/10.2174/2212796811206030003 DOI: https://doi.org/10.2174/2212796811206030003

Solymosi K., Schoefs B. (2010): Etioplast and etiochloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms. Photosynth. Res., 105: 143-166. https://doi.org/10.1007/s11120-010-9568-2 DOI: https://doi.org/10.1007/s11120-010-9568-2

Massa G. D., Emmerich, J. C., Morrow R. C., Bourget C. M., Mitchell C. A., (2006): Plant growth lighting for space life support: a review. Gravitational and Space Biology. 19: 19-30.https://www.researchgate.net/publication/228360091

Zhang X. W., Zhang Y. M. Chen F. (1999): Application of mathematical models to the determination optimal glucose concentration and light intensity for mixotrophic culture of Spirulina platensis. Process Biochemistry. 34: 477–481. http://dx.doi.org/10.1016/2FS0032-9592/2898/2900114-9. DOI: https://doi.org/10.1016/S0032-9592(98)00114-9

Wang C. Y., Fu C. C., Liu Y. C. (2007): Effect of using light emitting diodes on cultivation of Spirulina plantesis. Biochem. Engg. Journal. 37: 21-25. 0.1016/j.bej.2007.03.004 DOI: https://doi.org/10.1016/j.bej.2007.03.004

Matthijs H. C. P., Balke H., VanHes U. M., Kroon B. M. A., Mur L. R., Binot R. A. (1996): Application of Light-Emitting Diodes in Bioreactors: Flashing Light Effects and Energy Economy in Algal Culture (Chlorella pyrenoidosa). Biotechnology and Bioengineering 50: 98-107. https://doi.org/10.1002/(SICI)10970290(19960405)50:1%3C98::AID-BIT11%3E3.0.CO;2-3 DOI: https://doi.org/10.1002/(SICI)1097-0290(19960405)50:1<98::AID-BIT11>3.0.CO;2-3

Markou G.E. (2014): .Effect of various colors of light-emitting diodes (LEDs) on the biomass composition of Arthrospira platensis cultivated in semi-continuous mode. Appl. Biochem. Biotechnology.172: 2758-2768. https://doi.org/10.1007/s12010-014-0727-3 DOI: https://doi.org/10.1007/s12010-014-0727-3

Akimoto S., Makio Y., Fumiya H., Ayaka T., Aikawa S., Kondo A. (2012): Adaptation of light-harvesting systems of Arthrospira platensis to light conditions, probed by time-resolved fluorescence spectroscopy. Biochimica et Biophysica Acta. 1817: 1483-89. https://doi.org/10.1016/j.bbabio.2012.01.006 DOI: https://doi.org/10.1016/j.bbabio.2012.01.006

Furuki T., Maeda S., Imajo S., Hiroi T., Amaya T., Hirokawa T., Ito K., Nozawa H. (2003): Rapid and selective extraction of phycocyanin from Spirulina platensis with ultrasonic cell disruption. Journal of Applied Phycology. 15: 319–324. https://doi.org/10.1023/A:1025118516888 DOI: https://doi.org/10.1023/A:1025118516888

Bachchhav M. B., Kulkarni M. V., Ingale A. G. (2019): Process intensified extraction of phycocyanin followed by β-carotene from Spirulina plantesis using ultrasound assisted extraction. Separation science and technology. 55: 932-944. https://doi.org/10.1080/01496395.2019.1580293 DOI: https://doi.org/10.1080/01496395.2019.1580293

de Morais, Michele Greque, Denise da Fontoura Prates., Juliana Botelho Moreira., Jessica Hartwig Duarte., and Jorge Alberto Vieira Cost. (2018): "Phycocyanin from microalgae: properties, extraction and purification, with some recent applications." Industrial Biotechnology 14.1, 30-37. https://doi.org/10.1089/ind.2017.0009 DOI: https://doi.org/10.1089/ind.2017.0009

Tavanandi, H. A., Mittal, R., Chandrasekhar, J., & Raghavarao, K. S. M. S. (2018): Simple and efficient method for extraction of C-Phycocyanin from dry biomass of Arthospira platensis. Algal research, 31, 239-251. https://doi.org/10.1016/j.algal.2018.02.008 DOI: https://doi.org/10.1016/j.algal.2018.02.008

Dufossé, L., Galaup, P., Yaron, A., Arad, S. M., Blanc, P., Murthy, K. N. C., & Ravishankar, G. A. (2005): Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends in Food Science & Technology, 16(9), 389-406. https://doi.org/10.1016/j.tifs.2005.02.006 DOI: https://doi.org/10.1016/j.tifs.2005.02.006

Downloads

Published

2025-05-29

How to Cite

Bachchhav , M. B. ., & Bachchhav, B. . (2025). Exploration of microalgae for novel functional food ingredients through isolation, cultivation, and metabolite enhancement. Journal of Applied Biological Sciences, 19(2), 70–80. https://doi.org/10.71336/jabs.1440

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.