Abstract views: 43 / PDF downloads: 94


  • Yasar Aluc
  • Osman Kok
  • Ilhami Tuzun


Microalgae, Scenedesmus obliquus, carotenoids, HPLC analysis, DPPH and FRAP assays


The extracts of the algae species Scenedesmus obliquus isolated from Kapulukaya Reservoir (Kırıkkale, Turkey) were analyzed to determine the composition, content and antioxidant properties of carotenoids. The HPLC analysis was applied to identify carotenoids species and to determine their contents. Methanol–acetonitrile–water (84:14:2, v/v/v) and methylene chloride (100%) used in the gradient solvent system resulted in an acceptable separation. Of the 22 resolution peaks assigned to carotenoids either tentatively or positively, the first eight were identified to be epoxy containing while the remaining ones as main carotenoids namely, all-trans forms of lutein, β-carotene, α carotene, zeaxanthin, 13-or 13’-cis-lutein, 9-or 9’-cis-lutein, cis-lutein, 13-or 13’-cis- β-Carotene, 9-or 9’-cis-β-Carotene, 9-or 9’-cis- α-carotene and cis-neoxanthin. Quantitatively, S. obliquus was predominated by all-trans isomers of lutein and β-carotene, being 83.74 % (2.52 mg g-1) in total carotenoids (TC). Antioxidant capacity assays of DPPH and FRAP showed considerably low effects of S. obliquus extracts compared to standards. This was attributed to the lesser existence of cis isomers within derivatives. Multiple regression was utilised to partition the antioxidant effect of both assays and, revealed an estimation of FRAP dominating over DPPH. A need was arisen on the exploration of isomerisation mechanisms of the carotenoids compounds in order to better evaluate the species for a probable potential of further practical applications.


Henríquez, V., Escobar, C., Galarza, J., Gimpel, J. (2016): Carotenoids in Microalgae (Chapter 8) in Carotenoids in Nature, Subcellular Biochemistry 79, C. Stange (ed.), Springer International Publishing Switzerland pp: 219-36. doi 10.1007/978-3-319-39126-7_8.

Grossman, A. R., Lohr, M., Im, C. S. (2004): Chlamydomonas reinhardtii in the Landscape of Pigments. Annual Review of Genetilcs 38: 119-173. doi: 10.1146/annurev.genet.38.072902.092328.

Fiedor, J., Burda, K. (2014): Potential Role of Carotenoids as Antioxidants in Human Health and Disease. Nutrients 6: 466-488. doi: 10.3390/nu6020466.

Manayi, A., Abdollahi, M., Raman, T., Nabavi, S. F., Habtemariam, S., Daglia, M., Nabavi, S. M. (2015): Lutein and Cataract: From Bench to Bedside. Critical Reviews Biotechnology 8551: 1-11. doi: 10.3109/07388551.2015.1049510.

Gong, M., Bassi, A. (2016): Carotenoids from Microalgae: A Review of Recent Developments. Biotechnology Advances 34: 1396–1412.

Patrick, L. (2000): Beta-Carotene: The Controversy Continues. Journal Alternative Medicine Review 5(6): 530-545. PMID: 11134976.

Demming-Adams, B., Adams, W. W. (2002): Antioxidants in Photosynthesis and Human Nutrition. Science 298: 2149-2153. doi: 10.1126/science.1078002.

Praveenkumar, R., Lee, K., Lee, J., Oh, Y-K. (2015): Breaking Dormancy: An Energy-Efficient Means of Recovering Astaxanthin from Microalgae. Green Chemistry 17: 1226-1234.

Sun, Y., Wang, H., Guo, G., Pu, Y., Yan, B. (2014): The Isolation and Antioxidant Activity of Polysaccharides from the Marine Microalgae Isochrysis galbana. Carbohydrate Polymers 113: 22-31.

Zhang, Y., Fang, H., Xie, Q., Sun, J., Liu, R., Hong, Z., Yi, R., Wu, H. (2014): Comparative Evaluation of the Radical-Scavenging Activities of Fucoxanthin and its Stereoisomers. Molecules 19(2): 2100-2113.

Wells, M. L., Potin, P., Craigie, J. S., Raven, J. A., Merchant, S. S., Helliwell, K. E., Smith, A. G., Camire, M. E., Brawley, S. H. (2017): Algae as Nutritional and Functional Food Sources: Revisiting our Understanding. Journal of Applied Phycology 29: 949-982.

Zhou, Y., Chen, Y., Li, M., Hu, C. (2020): Production of High-Quality Biofuel via Ethanol Liquefaction of Pretreated Natural Microalgae. Renewable Energy 147:, 293-301. doi: 10.1007/978-3-319-32232-2.

Herrero, M., Jaime, L., Martin-Alvarez, P. J., Cifuentes, A., Ibanez, E. (2006): Optimization of the Extraction of Antioxidants from Dunaliella salina Microalga by Pressurized Liquids. Journal of Agricultural Food Chemistry 54: 5597-5603. doi: 10.1021/jf060546q.

Kyriakopoulou, K., Papadaki, S., Krokida, M. (2015): Life Cycle Analysis of β-Carotene Extraction Techniques. Journal of Food Engineering 167: 51-58.

Sanchez, J. F., Fernandez, J. M., Acien, F. G., Ceron, M. C., Perez, J., & Molina, E. (2008): Biomass and Lutein Productivity of Scenedesmus almeriensis: Influence of Irradiance, Dilution Rate and Temperature. Applied Microbiology and Biotechnology 79: 719-729. doi: 10.1007/s00253-008-1494-2.

Granado-Lorencio, F., Herrero-Barbudo, C., Acien-Fernandez, G., Molina-Grima, E., Fernandez-Sevilla, J. M., Perez-Sacristan, B., Blanco-Navarro, I. (2009): In Vitro Bioaccesibility of Lutein and Zeaxanthin from the Microalgae Scenedesmus almeriensis. Food Chemistry 114: 747-752. doi: 10.1016/j.foodchem.2008.10.058.

Del Campo, J. A., Rodriguez, H., Moreno, J., Vargas, M. A., Rivas, J., Guerrero M. G. (2004): Accumulation of Astaxanthin and Lutein in Chlorella zofingiensis (Chlorophyta). Applied Microbiology and Biotechnology 64: 848-854. doi: 10.1007/s00253-003-1510-5.

Prommuak, C., Pavasant, P., Quitain, A. T., Goto, M., Shotipruk, A. (2013): Simultaneous Production of Biodiesel and Free Lutein from Chlorella vulgaris. Chemical Engineering & Technology 5: 733-739.

Aluç, Y., Başaran-Kankılıç, G., Tüzün, İ. (2018): Determination of Carotenoids in Two Algae Species from the Saline Water of Kapulukaya reservoir by HPLC. Journal of Liquid Chromatography & Related Technologies 41(2): 93-100. doi:10.1080/10826076.2017.1418376.

Kartal, M., Orhan, İ., Abu-Asaker, M., Şenol, F.S., Atıcı, T., Şener, B. (2009): Antioxidant and Anticholinesterase Assets and Liquid Chromatography-Mass Spectrometry Preface of Various Fresh-Water and Marine Macroalgae. Pharmacognosy Magazine 5: 291-297. DOI: 10.4103/0973-1296.58147.

Mendes-Pinto, M. M., Raposo, M. F. J., Bowen, J., Young, A. J., Morais, R. (2001): Evaluation of Different Cell Disruption Processes on Encysted Cells of Haematococcus pluvialis: Effects on Astaxanthin Recovery and Implications for Bio-availability. Journal of Applied Phycology 13: 19-24.

Kang, C. D., An, J. Y., Park, T. H., Sim, S. J. (2006): Astaxanthin Biosynthesis from Simultaneous N and P Uptake by the Green Alga Haematococcus pluvialis in Primary-Treated Wastewater. Biochemical Engineering Journal 31: 234-238. doi: 10.1016/j.bej.2006.08.002.

Li, H-B., Chen, F. (2001): Preparative Isolation and Purification of Astaxanthin from the Microalgae Chlorococcum sp. by High-Speed Counter-Current Chromatography. Journal of Chromatography A 952: 133-137. doi: 10.1016/s0021-9673(01)01022-6.

Durmaz, Y. (2007): Vitamin E (α-tocopherol) Production by the Marine Microalgae Nanochloropsis oculata (Eustigmatophyceae) in nitrogen limitation. Aquaculture 272: 717-722. doi:10.1016/j.aquaculture.2007.07.213.

Varela, J. C., Pereira, H., Vila, M., Leo´n, R. (2015): Production of Carotenoids by Microalgae: Achievements and Challenges. Photosynthesis Research 125: 423-436. doi: 10.1007/s11120-015-0149-2.

Patnaik, R., Mallick, N. (2015): Utilization of Scenedesmus obliquus Biomass as Feedstock for Biodiesel and other Industrially Important Co-products: An Integrated Paradigm for Microalgal Biorefinery. Algal Research 12: 328-336. doi: 10.1016/j.algal.2015.09.009.

Breuer, G., Martens, D. E., Draaisma, R. B., Wijffels, R. H., Lamers, P. P. (2015): Photosynthetic Efficiency and Carbon Partitioning in Nitrogen-Starved Scenedesmus obliquus. Algal Research 9: 254-262.

Bischoff, H. W., Bold, H. C. (1963): Phycological Studies IV. Some Soil Algae from Enchanted Rock and Related Algal Species. University of Texas Publication, Austin.

Richmond, A., Hu, Q. (2013): Handbook of microalgal culture: Biotechnology and Applied Phycology 2nd edition. Wiley Blackwell ISBN: 978-0-470-67389-8.

Salvador, N., Garreta, A. G., Lavelli, L., Ribera, M. (2007): Antimicrobial Activity of Iberian Macroalgae. Scientia Marina 71(1): 101-113. doi:

Blois, M. S. (1958): Antioxidant Determinations by the Use of a Stable Free Radical. Nature 26: 1199-1200.

Oyaizu, M. (1986): Studies on products of browning reaction: Antioxidative Activities of Products of Browning Reaction Prepared from Glucosamine. Japan Journal of Nutrition 44: 307-315.

Yuan, J. P., Chen, F., Liu, X., Li, X. Z. (2002): Carotenoid Composition in the Green Microalga Chlorococcum. Food Chemistry 76: 319–325. doi: 10.1016/s0308-8146(01)00279-5.

Inbaraj, B. S., Chien, J. T., Chen, B. H. (2006): Improved High Performance Liquid Chromatographic Method for Determination of Carotenoids in the Microalga Chlorella pyrenoidosa. Journal of Chromatography A 1102: 193-199. doi: 10.1016/j.chroma.2005.10.055.

Liu, H. L., Kao, T. H., & Chen, B. H. (2004): Determination of Carotenoids in the Chinese Medical Herb Jiao-Gu-Lan (Gynostemma pentaphyllum MAKINO) by Liquid Chromatography. Chromatographia 60: 411-417. doi: 10.1016/s0021-9673(04)01406-2.

Chen, J. P., Tai, C. Y., Chen, B. H. (2004): Improved liquid chromatographic method for determination of carotenoids in Taiwanese Mango (Mangifera indica L.). Journal of Chromatography A 1054(1–2): 261-268.

Glass, A., Keogh, J., Meyskens, F., Valanis, B., Williams, J. et al. (1996). Effects of a Combination of Beta Carotene and Vitamin A on Lung Cancer and Cardiovascular Disease. New England Journal of Medicine 334(18): 1150–1155. doi: 10.1056/nejm199605023341802.

Jayappriyan, K. R., Rajkumar, R., Venkatakrishnan, V., Nagaraj, S., Rengasamy, R. (2013): In Vitro Anticancer Activity of Natural β-Carotene from Dunaliella salina EU5891199 in PC-3 Cells. Biomedicine & Preventive Nutrition 3(2): 99-105. doi: 10.1016/j.bionut.2012.08.003.

Ho, S-H., Chan, M-C., Liu, C-C., Chen, C-Y., Lee, W-L., Lee, D-J., Chang, J-S. (2014): Enhancing Lutein Productivity of an Indigenous Microalga Scenedesmus Obliquus FSP-3 Using Light-Related Strategies. Bioresource Technology 152: 275-282. doi: 10.1016/j.biortech.2013.11.031.

Goiris, K., Muylaert, K., Fraeye, I., Foubert, I., De Brabanter, J., De Cooman, L. (2012): Antioxidant Potential of Microalgae in Relation to Their Phenolic and Carotenoid Content. Journal of Applied Phycology 24: 1477-1486. doi: 10.1007/s10811-012-9804-6.

Cerón-García, M. C., González-López, C. V., Camacho-Rodríguez, J., López-Rosales L, García-Camacho F., Molina-Grima, E. (2018): Maximizing Carotenoid Extraction from Microalgae Used as Food Additives and Determined by Liquid Chromatography (HPLC). Food Chemistry 257: 316-324. doi: 10.1016/j.foodchem.2018.02.154.

Paliwal, C., Ghosh, T., George, B., Pancha, I., Maurya, R., Chokshi, K., Ghosh, A., Mishra, S. (2016): Microalgal Carotenoids: Potential Nutraceutical Compounds with Chemotaxonomic Importance. Algal Research 15: 24–31.

Aburai, N., Ohkubo, S., Miyashita, H., Abe, K. (2013): Composition of Carotenoids and Identification of Aerial Microalgae Isolated from the Surface of Rocks in Mountainous Districts of Japan. Algal Research 2: 237–243. doi:10.1016/j.algal.2016.01.017.

Guedes, A. C., Amaro, H. M., Malcata, F. X. (2011): Microalgae as Sources of Carotenoids. Marine Drugs 9: 625-644.

Huang, D., Ou, B., Prior, R. L. (2005): The Chemistry Behind Antioxidant Capacity Assays. Journal of Agricultural and Food Chemistry 53: 1841-1856.

Apak, R., Özyürek, M., Güçlü, K., Çapanoğlu, E. (2016): Antioxidant Activity/Capacity Measurement. 1. Classification, Physicochemical Principles, Mechanisms and Electron Transfer (ET)-Based Assays. Journal of Agricultural and Food Chemistry 64: 997-1027.

Legendre, P, Legendre, L. (2012): Numerical Ecology. Elsevier (3rd edition), Pp: 1006. ISBN: 9780444538680.

Hu, C-C., Lin, J-T., Lu, F-J., Chou, F-P., Yang, D-J. (2008): Determination of Carotenoids in Dunaliella Salina Cultivated in Taiwan and Antioxidant Capacity of the Algal Carotenoid Extract. Food Chemistry 109: 439-446. doi: 10.1016/j.foodchem.2007.12.043.

Zhang, M., Li, R., Cao, L., Shi, J., Liu, H., Huang, Y., Shen, Q., (2014): Algal Sludge from Taihu Lake can be Utilized to Create Novel PGPR-Containing Bio-Organic Fertilizers. Journal of Environmental Management 132: 230-236. doi: 10.1016/j.jenvman.2013.10.031.

Yang, C., Zhang, H., Liu, R., Zhu, H., Zhang, L., Tsao, R. (2017): Bioaccessibility, Cellular Uptake, and Transport of Astaxanthin Isomers and Their Antioxidative Effects in Human Intestinal Epithelial Caco-2 Cells. Journal of Agricultural and Food Chemistry 65: 10223-10232.

Kopec, R. E., Failla, M. L. (2018): Recent Advances in the Bioaccessibility and Bioavailability of Carotenoids and Effects of Other Dietary Lipophiles. Journal of Food Composition and Analysis 68: 16-30.

Honda, M., Kageyama, H., Hibino, T., Zhang, Y., Diono, W. (2019): Improved Carotenoid Processing With Sustainable Solvents Utilizing Z-Isomerization-Induced Alteration in Physicochemical Properties: A Review and Future Directions. Molecules 24: 2149, 1-19. Doi:10.3390/molecules24112149.

Guedes, A. C., Gião, M. S., Seabra, R., Silva Ferreira, A. C., Tamagnini, P., Moradas-Ferreira, P., Xavier Malcata, F. (2013): Evaluation of the Antioxidant Activity of Cell Extracts from Microalgae. Marine Drugs 11: 1256-1270. doi:10.3390/md11041256.

Jimene´z, C., Pick, U. (1993): Differential Reactivity of β-Carotene Isomers from Dunaliella Bardawil toward Oxygen Radicals. Plant Physiology 101: 385-390. doi: 10.1104/pp.101.2.385.

Müller, L., Fröhlich, K., & Böhm, V. (2011): Comparative Antioxidant Activities of Carotenoids Measured by Ferric Reducing Antioxidant Power (FRAP), ABTS Bleaching Assay (αTEAC), DPPH Assay and Peroxyl Radical Scavenging Assay. Food Chemistry 129: 139-148. doi: 10.1016/j.foodchem.2011.04.045.




How to Cite

Aluc, Y., Kok, O., & Tuzun, I. (2022). PROFILING THE CAROTENOIDS OF MICROALGA (Scenedesmus obliquus) EXTRACT BY HPLC AND ITS ANTIOXIDANT CAPACITY. Journal of Applied Biological Sciences, 16(2), 206–219. Retrieved from