Fatty acid profiles of propolis and bee bread: effects on the shelf life of foods
DOI:
https://doi.org/10.71336/jabs.1468Keywords:
Propolis, Bee bread, Fatty acid, Docking, TyrosinaseAbstract
In recent years, increasing nutritional awareness has led to a growing demand for natural foods, with consumers preferring products containing natural ingredients over synthetic additives. This trend has accelerated the search for natural alternatives to synthetic preservatives in the food industry. Among natural additives, bee-derived products have attracted considerable attention due to their rich chemical composition and well-documented health-promoting properties. Although synthetic additives are widely used because of their cost-effectiveness, concerns regarding their potential adverse effects have intensified interest in natural preservation strategies. Propolis and bee bread (perga) are particularly promising in the food sector owing to their potential to extend shelf life. In this study, fatty acid methyl ester (FAME) analysis of the ethanol extracts of propolis and bee bread revealed the presence of 10 different fatty acids in propolis and 20 in bee bread. The dominant fatty acids were identified as oleic, linoleic, and linolenic acids. Furthermore, molecular docking analyses were performed to calculate the binding energies of these fatty acids to the tyrosinase enzyme (PDB ID: 5M8Q), which is associated with food spoilage reactions. The observed inhibitory interactions between fatty acids and tyrosinase suggest that propolis and bee bread may serve as effective natural alternatives to synthetic preservatives. Overall, the findings indicate that bee products hold strong potential for use in the natural preservation of food systems.
References
[1] Atan, T. (2023): Propolis ile fonksiyonel maden suyu üretimi. [Production of functional mineral water with propolis]. Yüksek Lisans Tezi. Uludağ Üniversitesi, Bursa, Türkiye.
[2] Ulusoy, E. (2012): Bal ve apiterapi. [Honey and apitherapy]. Uludağ Arıcılık Dergisi, Ağustos. Erişim: 26 Aralık 2024. [Online].
[3] Suhag, R., Kumar, N., Petkoska, A.T., Upadhyay, A. (2020): Film formation and deposition methods of edible coating on food products: A review. Food Research International, 136:109582.https://doi.org/10.1016/j.foodres.2020.109582
[4] Kumova, U. (2002): Önemli bir arı ürünü: Propolis. [An important bee product: Propolis]. Uludag Bee Journal, 2(2):10–24.
[5] Keskin, Ş., Yatanaslan, L., Karlıdağ, S. (2020): Farklı illerden toplanan propolis örneklerinin kimyasal karakterizasyonu. [Chemical characterization of propolis samples collected from different provinces]. Uludag Bee Journal, 20(1):81–88. https://doi.org/10.31467/uluaricilik.714317
[6] Atik, A., Gümüş, T. (2017): Propolisin gıda endüstrisinde kullanım olanakları. [Possibilities of propolis use in the food industry]. Akademik Gıda, 15(1):60–65. https://doi.org/10.24323/akademik-gida.306066
[7] Ciric, J., Spiric, D., Baltic, T., Janjic, J., Petronijevic, R., Simunovic, S., Djordjevic, V. (2019): Element concentration and fatty acid composition of Serbian bee bread. IOP Conference Series: Earth and Environmental Science, 333:012050. 10.1088/1755-1315/333/1/012050
[8] Detry, R., Simon-Delso, N., Bruneau, E., Daniel, H.M. (2020): Specialisation of yeast genera in different phases of bee bread maturation. Microorganisms, 8(11):1789. https://doi.org/10.3390/microorganisms8111789.
[9] Aylanc, V., Falcão, S.I., Vilas-Boas, M. (2023): Bee pollen and bee bread nutritional potential: Chemical composition and macronutrient digestibility under in vitro gastrointestinal system. Food Chemistry, 413:135597.10.1016/j.foodchem.2023.135597.
[10] Sökmen, B.B., Yılmazoğlu, B. (2018): Tirozinaz enziminin Giresun yöresinde yetişen yenilebilir kanlıca mantarından (Lactarius salmonicolor) saflaştırılması ve karakterizasyonu. [Purification and characterization of tyrosinase enzyme from edible Lactarius salmonicolor mushroom grown in Giresun region]. Karadeniz Fen Bilimleri Dergisi, 8(2):10–23. https://doi.org/10.31466/kfbd.412186.
[11] Balentine, D.A., Harbowy, M.E., Graham, H.N. (1998): Tea: The plant and its manufacture; chemistry and consumption of the beverage. In: Caffeine, CRC Press, 35-72.
[12] Zampini, I.C., Salas, A.L., Maldonado, L.M., Simirgiotis, M.J., Isla, M.I. (2021): Propolis from the Monte Region in Argentina: A potential phytotherapic and food functional ingredient. Metabolites, 11(2):76. 10.3390/metabo11020076.
[13] Arslan, S., Perçin, D., Silici, S., Koç, A.N., Er, Ö. (2010): Farklı çözücülerle hazırlanan propolis özütlerinin mutans streptokoklar üzerine in vitro antimikrobiyal etkisi. [In vitro antimicrobial effect of propolis extracts prepared with different solvents on mutans streptococci]. Sağlık Bilimleri Dergisi, 19(1):68–73.
[14] Canbay, H.S., Bardakçı, B. (2011): Determination of fatty acid, C, H, N and trace element composition in grape seed by GC/MS, FTIR, elemental analyzer and ICP/OES. Süleyman Demirel University Faculty of Arts and Science Journal of Science, 6(2):140–148.
[15] Uzun, M., Guvenalp, Z., Kazaz, C., Demirezer, L.O. (2020): Matrix metalloproteinase inhibitor and sunscreen effective compounds from L.: isolation, identification, bioactivity and molecular docking study. Phytochemical Analysis, 31(6):818–834. 10.1002/pca.2948.
[16] Bankova, V., Dyulgerov, Al., Popov, S., Marekov, N. (1987): A GC/MS study of the propolis phenolic constituents. Zeitschrift für Naturforschung C, 42(1–2):147–151. 10.1515/znc-1987-1-224.
[17] Silici, S. (2008): Farklı botanik orijine sahip propolis örneklerinde biyolojik olarak aktif bileşiklerin belirlenmesi. [Determination of biologically active compounds in propolis samples of different botanical origins]. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(1):120–128.
[18] Urcan, A., Mărghitaș, L. A., Dezmirean, D.S., Bobiș, O., Bonta, V., Mureșan, C.I., Mărgăoan, R. (2017): Chemical composition and biological activities of beebread – review. Bulletin of the university of agricultural sciences & veterinary medicine Cluj-Napoca. Animal Science & Biotechnologies, 74(1).
[19] Kaplan, M., Karaoğlu, Ö., Eroğlu, N., Silici, S. (2016): Fatty acid and proximate composition of bee bread. Food Technology and Biotechnology, 54(4):497–504. 10.17113/ftb.54.04.16.4635.
[20] Isidorov, V.A., Isidorova, A.G., Sczczepaniak, L., Czyżewska, U. (2009): Gas chromatographic–mass spectrometric investigation of the chemical composition of bee bread. Food Chemistry, 115(3):1056–1063. 10.1016/j.foodchem.2008.12.025.
[21] Dranca, F., Ursachi, F., Oroian, M. (2020): Bee bread: physicochemical characterization and phenolic content extraction optimization. Foods, 9(10):1358. 10.3390/foods9101358.
[22] Min, X., Lu, L., Xu, X., Wen, Y., Zheng, X. (2023): Investigation on the inhibition mechanism and binding behavior of paeonol to tyrosinase and its anti-browning property by multi-spectroscopic and molecular docking methods. International Journal of Biological Macromolecules, 253:126962. 10.1016/j.ijbiomac.2023.126962.
[23] Shamsuri, S.S., Normaya, E., Ismail, H., Iqbal, A., Piah, M.B.M., Farina, Y., Hamzah, A.S., Ahmad, M.N. (2023): (1E)-1-(2-pyrazinyl)ethanone thiosemicarbazone (PT) as a tyrosinase inhibitor with anti-browning activity: spectroscopy, DFT and molecular docking studies. Journal of Molecular Structure, 1291:136039. 10.1016/j.molstruc.2023.136039.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Journal of Applied Biological Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.