Binding studies of Ruthenium(II) polypyridyl complexes with DNA isolated from spinach extract

Authors

DOI:

https://doi.org/10.71336/jabs.1469

Keywords:

Ruthenium complex, Polypyridyl ligand, Spinach, Benesi-Hildebrand plot

Abstract

Despite significant medical advancements, the need for a more effective and less toxic chemotherapeutic agent remains a pressing challenge in modern medicine. This study investigates the binding interactions of ruthenium polypyridyl complexes with spinach DNA samples, aiming to understand their potential as therapeutic agents and in other fields. The binding interactions between [Ru(LL)3]2+, (L- bpy-bipyridyl and dmbpy-dimethyl bipyridyl) complexes, and the DNA from spinach(Spinacia oleracea) were analyzed by UV-visible spectroscopy and emission graphs. The binding constants were determined by the Benesi-Hildebrand method. Both complexes exhibit significantinteraction with the spinach DNA,as indicated by the binding constants in a range of 105 M-1. The results suggest potential applications of these complexes in biomedical and plant biotechnological fields. However, further in-depth mechanistic studies are warranted.

Author Biography

George Allen Gnana Raj, Department of Chemistry and Research Centre, Scott Christian College (Autonomous) Nagercoil, Tamil Nādu, India

Associate Professor of Chemistry,

Scott Christian Colleg(Autonomous),

Nagercoil,

Tamilnadu,

India

References

[1] Gill, M. R., & Thomas, J. A. (2012). Ruthenium(II) polypyridyl complexes and DNA—From structural probes to cellular imaging and therapeutics. Chemical Society Reviews, 41(8), 3179–3192. https://doi.org/10.1039/C2CS15299A DOI: https://doi.org/10.1039/c2cs15299a

[2] Luo, Z., Yu, L., Yang, F., Zhao, Z., Yu, B., Lai, H., Wong, K.-H., Ngai, S.-M., Zheng, W., & Chen, T. (2014). Ruthenium polypyridyl complexes as inducers of ROS-mediated apoptosis in cancer cells by targeting thioredoxin reductase. Metallomics, 6(8), 1480–1490. https://doi.org/10.1039/c4mt00044g DOI: https://doi.org/10.1039/C4MT00044G

[3] Zhang, P., Chen, J., & Liang, Y. (2010). DNA binding, cytotoxicity, and apoptotic-inducing activity of ruthenium(II). Acta Biochimica et Biophysica Sinica (Shanghai), 42(7), 440–449. https://doi.org/10.1093/abbs/gmq040 DOI: https://doi.org/10.1093/abbs/gmq040

[4] Jiang, X. (2024). Binding properties of Ruthenium(II) polypyridyl complexes [Ru(bpy)₂(L)]²⁺ (L = 7-F-dppz and 7-OCH₃-dppz) with poly(A)-poly(U) under dilute and molecular crowding conditions. Journal of Molecular Structure, 2024.10.1016/j.molstruc.2024.138585 DOI: https://doi.org/10.1016/j.molstruc.2024.138585

[5] Kaushal, R., Kaur, M., Sheetal, J., Sharma, J., & Nehra, K. (2024). Antibacterial and ct-DNA binding studies of new synthesized ruthenium (III) hydroxamate complexes: Design, synthesis, DFT calculations, and in-vitro study. Journal of Molecular Structure, 1295(2), 136788. https://doi.org/10.1016/j.molstruc.2023.136788 DOI: https://doi.org/10.1016/j.molstruc.2023.136788

[6] Pitto-Barry, A. (2021). Polymeric nanoparticles containing ruthenium complexes for biomedical applications: A mini-review on recent developments. Nanomaterials, 11(2), 348. https://doi.org/10.3390/nano11020348 DOI: https://doi.org/10.3390/nano11020348

[7] Srishailam, A., Gabra, N. M., Kumar, Y. P., Reddy, K. L., Devi, C. S., Anil Kumar, D. A., Singh, S. S., & Satyanarayana, S. (2014). Synthesis, characterization, DNA binding, and antitumor activity of ruthenium(II) polypyridyl complexes. Journal of Photochemistry and Photobiology B: Biology, 141, 47–58. https://doi.org/10.1016/j.jphotobiol.2014.09.005 DOI: https://doi.org/10.1016/j.jphotobiol.2014.09.003

[8] Nasir, F. M. H., Jabeen, E., Qureshi, R., Ansari, F. L., Shaukat, A., Nasir, U., & Ahmed, A. (2024). Investigation of redox mechanism and DNA binding of novel 2-(x-nitrophenyl)-5-nitrobenzimidazole (x = 2, 3, and 4). Biophysical Chemistry, 258, 106316. https://doi.org/10.1016/j.bpc.2020.106316 DOI: https://doi.org/10.1016/j.bpc.2019.106316

[9] Grant, C. J., Sleeman, A. D., Aldrich-Wright, J. R., Greguric, I., & Hambley, T. W. (1998). A 1H NMR study of the DNA binding of ruthenium(II) polypyridyl complexes. Inorganic Chemistry, 37(13), 3373–3379. https://doi.org/10.1021/ic971015f DOI: https://doi.org/10.1021/ic971194v

[10] Bing, T., Fang, S., Dan, W., Bo-Hong, G., Yang-Jie, W., Qiao-Yan, Y., & Yun-Jun, L. (2017). DNA-binding, molecular docking studies, and biological activity studies of ruthenium(II) polypyridyl complexes. RSC Advances, 7, 34945–34958. https://doi.org/10.1039/C7RA05103D DOI: https://doi.org/10.1039/C7RA05103D

[11] Maeda, N., Yoshida, H., &Mizushina, Y. (2010). Spinach and health: Anticancer effect. In Bioactive foods in promoting health: Fruits and vegetables (pp. 393–405). https://doi.org/10.1016/B978-0-12-374628-3.00026-8 DOI: https://doi.org/10.1016/B978-0-12-374628-3.00026-8

[12] Ancilla, S., & Judia, H. S. (2016). Anticancer activity of crude extract and carotenoid pigments from vegetables. International Journal of Medicine and Pharmaceutical Research, 4(5), 276-280.

[13] Akasaka, H., Mizushina, Y., Yoshida, K., Ejima, Y., Mukumoto, N., Wang, T., Inbushi, S., Wakahara, M. N. Y., & Sasaki, R. (2016). MGDG extracted from spinach enhances the cytotoxicity of radiation in pancreatic cancer cells. Radiation Oncology, 11(1), 153. https://doi.org/10.1186/s13014-016-0677-5 DOI: https://doi.org/10.1186/s13014-016-0729-0

[14] Abu Al-Qumboz, M. N., & Abu-Naser, S. S. (2019). Spinach expert system: Diseases and symptoms. International Journal of Academic Information Systems Research, 3(3), 16-22. SSRN: https://ssrn.com/abstract=3369032

[15] Miano, T. F. (2016). Nutritional value of Spinacia oleraecea spinach—An overview. International Journal of Life Sciences and Research, 2(12), 172-174. https://doi.org/10.13040/IJPSR.0975-8232.IJLSR.2(12).172-74

[16] Rao, S. V., Tewani, R., & Spinach, J. K. S. (2016). Natural laxative. International Journal of Applied Research and Technology. http://www.ijart.info/

[17] Mohammed Amir Husain.,Hassan Mubarak Ishqi., Tarique Sarwar.,Sayed Ur Rehman., Mohammad Tabish.(2017).Interaction of indomethacin with calf thymus DNA: a multi-spectroscopic, thermodynamic and molecular modelling approach,Medchemcomm,8(6),1283-1296.https://doi.org. 10.1039/c7md00094d. DOI: https://doi.org/10.1039/C7MD00094D

Figure 1.  Structure of the chosen Ruthenium complexes and the ligands used.

Downloads

Published

2025-09-29

How to Cite

Shelty, L. A. M. G., Celin, T. S., & Allen Gnana Raj, G. (2025). Binding studies of Ruthenium(II) polypyridyl complexes with DNA isolated from spinach extract. Journal of Applied Biological Sciences, 19(3), 210–215. https://doi.org/10.71336/jabs.1469

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.