A NOVEL MUTATION IN PPP2CA GENE AND ITS ASSOCIATION WITH FAT TAIL STORAGE AND CARCASS TRAITS IN SHEEP

Authors

  • Masoomeh Zare
  • Mostafa Sadeghi
  • Mohammad Moradi-Shahrbabak
  • Abbas Safari
  • Misagh Moridi Ph.D. of Animal Breeding and Genetics, Department of Animal Science, Faculty of Agriculture Science, University of Guilan
  • Mahdi Nosratjou

DOI:

https://doi.org/10.71336/jabs.967

Keywords:

Candidate genes, PPP2CA gene, mutations synonymous, fat tail

Abstract

In the livestock industry, a large, fat tail becomes advantageous in sheep, and therefore, a reduction in the size of the fat tail is often beneficial. Because the difference between Iranian thin and fat tail breeds in fat-related genes are in the tail. So the aim of this study aimed to find candidate genes related to fat deposition between the Iranian thin and fat tail breeds located on chromosome 5 using bioinformatics and molecular techniques. Firstly, we investigated the region placed on chromosome 5 by Genomic Sequence Databases, including Pre Ensemble and UCSC Genome Browser. The local and global alignment of sequences for other species showed a high similarity with a region of chromosome 7 in cattle (up to 95%) is identified as an orthologous region. Additionally, the PPP2CA gene on bovine chromosome 7 was orthologous. Then, we investigated the relationship between the polymorphism of the PPP2CA gene with carcass, growth, and fat tail traits in Lori-Bakhtiari (165 heads) and Zel (140 heads) breeds using PCR-SSCP technique. These data indicated two different banding patterns (genotypes) and two mutations (synonymous and Indel).  The mutations interchangeable lead to the change of nucleotide T to C, then the codon was the switch from TCT to TCC both encode serine. The second mutation was the deletion of the nucleotide T at position 2 of the second pattern, which changed the open reading frame and created the end codon in this region, changing protein function. Finally, the association between genotypes and traits of weaning weight and fat tail weight in Lori-Bakhtiari and cholesterol in Zel breeds was significant (p <0.05). Also, genotypes of the exon1 position in the PPP2CA gene were associated with carcass traits (fat percentage of carcass and triglyceride traits) in the Zel Slaughter breed (p <0.05). The results showed that one of the most distinctive traits was tail fatness and visceral organs of the body in breeds considered. This area of the PPP2CA gene has a significant association with mentioned traits, and can implemented in breeding programs.

References

Chessa, B., Pereira, F., Arnaud, F., Amorim, A., Goyache, F., Mainland, I., Kao, R. R., Pemberton, J. M., Beraldi, D., Stear, M. J. (2009): Revealing the history of sheep domestication using retegrations. Science 324: 532-536. DOI: https://doi.org/10.1126/science.1170587

Rezaei, H. R., Naderi, S., Chintauan-Marquier, I.C., Jordan, S., Taberlet, P., Tahir Virk, A., Naghash, H. R., Rioux, D., Kaboli, M., Luikart, G., Pompanon, F. (2010): Evolution and taxonomy of the wild species of the genus Ovis (Mammalia, Artiodactyla, Bovidae). Mol Phylogenet Evol 54: 315-326. DOI: https://doi.org/10.1016/j.ympev.2009.10.037

Zhou, G., Wang, X., Yuan, C., Kang, D., Xu, X., Zhou, J., Geng, R., Yang, Y., Yang, Z., Chen, Y. (2017): Integrating miRNA and mRNA expression profiling uncovers miRNAs underlying fat deposition in sheep. BioMed Res Int 17: 1857580. DOI: https://doi.org/10.1155/2017/1857580

Nejati-Javaremi, A., Izadi, F., Ramati, G. H., Moradi, M. (2007): Selection in fat-tailed sheep based on two traits of fat-tail and body weight versus single-triat total body weight. Int J Agri and Biol 9: 645-648.

Braissant, O., Foufelle, F., Scotto, C., Dauça, M., Wahli, W. (1996): Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 137: 354–366. DOI: https://doi.org/10.1210/endo.137.1.8536636

Li, B., Qiao, L., An, L., Wang, W., Liu, J., Ren, Y., Pan, Y., Jing, J., Liu, W. (2018): Transcriptome analysis of adipose tissues from two fat-tailed sheep breeds reveals key genes involved in fat deposition. BMC Genomics 19: 338. DOI: https://doi.org/10.1186/s12864-018-4747-1

Talebi, M., Karami, M., Movassasgh, H. (2010): Effects of docking and fattening period on performance and carcass physical composition of Lori-Bakhtiari male lambs. Anim Sci J 85: 31-39.

Moradi, M.H., Nejatip-Javaremi, A., Moradi Shahrbabak, M., Dodds, K. G., Mc Ewan, J. C. (2012): Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genet 13: 10-17. DOI: https://doi.org/10.1186/1471-2156-13-10

Kamalzadeh, A., Rajabbaigy, M., Kiasat, A. (2008): Livestock production systems and trends in livestock industry in Iran. J Agri Soc Sci 4: 183–188.

Nabavi, R., Alijani, S., Taghizadeh, A., Rafat, S. A., Bohlouli, M. (2014): Genetic study of reproductive traits in Iranian native Ghezel sheep using Bayesian approach. Small Rumin. Res 120: 189–195. DOI: https://doi.org/10.1016/j.smallrumres.2014.05.008

Kashan, N. E. J., Manafi-Azar, G. H., Afzalzadeh, A., Salehi, A. (2005): Growth performance and carcass quality of fattening lambs from fat-tailed and tailed sheep breeds. Small Rumin Res 60: 267-271. DOI: https://doi.org/10.1016/j.smallrumres.2005.01.001

Marai, I. F. M., Daader, A. H., Bahgat, L. B. (2009): Performance traits of purebred Ossimi and Rahmani lambs and their crosses with Finnsheep born under two accelerated mating systems. Arch Tierz 52: 497-451.

Akey, J. M. (2009): Constructing genomic maps of positive selection in humans: Where do we go from here. Genome Res 19: 711-722. DOI: https://doi.org/10.1101/gr.086652.108

Qanbari, S., Pimentel, E. C. G., Tetens, J., Thaller, G., Lichtner, P., Sharifi, A. R., Simianer, H. (2010): A genome-wide scan for signatures of recent selection in Holstein cattle. Anim Genet 41: 377-389. DOI: https://doi.org/10.1111/j.1365-2052.2009.02016.x

Wang, X., Zhou, G., Xu, X., Geng, R., Zhou, J., Yang, Y., Yang, Z., Chen, Y. (2014): Transcriptome profile analysis of adipose tissues from fat and short-tailed sheep. Gene 549: 252–257. DOI: https://doi.org/10.1016/j.gene.2014.07.072

Bakhtiarizadeh, M. R., Salehi, A., Alamouti, A. A., Abdollahi-Arpanahi, R., Salami, S. A. (2019): Deep transcriptome analysis using RNA-Seq suggests novel insights into molecular aspects of fat-tail metabolism in sheep. Sci Rep-UK 9: 9203. DOI: https://doi.org/10.1038/s41598-019-45665-3

Karamichou, E., Richardson, R. I., Nute, G. R., Gibson, K. P., Bishop, S. C. (2006): Genetic analyses and quantitative trait loci detection, using a partial genome scan, for intramuscular fatty acid composition in Scottish Blackface sheep. J Anim Sci 84: 3228-3238. DOI: https://doi.org/10.2527/jas.2006-204

Vatankhah, M., Talebi, M. A. (2008): Heritability estimates and correlations between production and reproductive traits in Lori-Bakhtiari sheep in Iran. South African J Anim Sci 38: 110-118.

Tiede, S., Cantz, M., Spranger, J., Braulke, T. (2006): Missense mutation in the N-acetylglucosamine-1-phosphotransferase gene (GNPTA) in a patient with mucolipidosis II induces changes in the size and cellular distribution of GNPTG. Hum Mutat 27: 830–831. DOI: https://doi.org/10.1002/humu.9443

Kimchi Sarfaty, C., Oh, J. M., Kim, I. W., Sauna, Z. E., Calcagno, A. M., Ambudkar, S. V., Gottesman, M. M. (2007): A "Silent" Polymorphism in the MDR1 Gene Changes Substrate Specificity. Science 315: 525-528. DOI: https://doi.org/10.1126/science.1135308

Chamary, J. V., Parmley, J. L., Hurst, L. D. (2006): Hearing silence: non-neutral evolution at synonymous sites in mammals. Nat Rev Genet 7: 98-108. DOI: https://doi.org/10.1038/nrg1770

Goymer, P. (2007): Synonymous mutations break their silence. Nat Rev Genet 8: 92-192. DOI: https://doi.org/10.1038/nrg2056

Zhou, T., Ko, E. A., Gu, W., Lim, I., Bang, H., Ko, J. H., Uversky, V. N. (2012): Non-Silent Story on Synonymous Sites in Voltage-Gated Ion Channel Genes. PLoS ONE 7: e48541. DOI: https://doi.org/10.1371/journal.pone.0048541

Zhang, Z., Miteva, M. A., Wang, L., Alexov, E. (2012): Analyzing effects of naturally occurring missense mutations. Comput Math Methods Med 2012: 1-15. DOI: https://doi.org/10.1155/2012/805827

Talebi, M. A., Gholamhosani, K. (2018): Growth and Feedlot Performance of Lori-Bakhtiari, Romanov × Lori-Bakhtiari and Pakistani × Lori-Bakhtiari Crossbred Lambs. Res on Anim Prod 8: 201-208. DOI: https://doi.org/10.29252/rap.8.17.201

Gokdal, O., Ulker, H., Karakus, F., Cengiz, F., Temur, C., Handil, H. (2004): Growth, feedlot performance and carcass characteristic of Karakas and crossbreed lambs (F1) (Ile de France x Akkaraman (G1) x Karakas) under rural farm conditions in Turkey. South African J of Anim Sci 34: 223-232.

Marai, I. F. M., Daader, A. H., Bahgat, L. B. (2009): Performance traits of purebred Ossimi and Rahmani lambs and their crosses with Finnsheep born under two accelerated mating systems. Arch Tierz 52: 497-451. DOI: https://doi.org/10.5194/aab-52-497-2009

McClure, M. C., Morsci, N. S., Schnabel, R. D., Kim, J. W., Yao, P., Rolf, M. M., McKay, S. D., Gregg, S. J., Chapple, R. H., Northcutt, S. L., Taylor, J. F. (2010): A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. Anim Genet 41: 597-607. DOI: https://doi.org/10.1111/j.1365-2052.2010.02063.x

Nalaila, S. M., Stothard, P., Moore, S. S., Li, C., Wang, Z. (2012): Whole-genome QTL scan for ultrasound and carcass merit traits in beef cattle using Bayesian shrinkage method. J Anim Breed Genet 129: 107-11. DOI: https://doi.org/10.1111/j.1439-0388.2011.00954.x

Kimura, M. (1994): The neutral theory of molecular evolution. Cambridge University Press, New York.

Yan, H., Zhong, G., Xu, G., He, W., Jing, Z., Gao, Z., Huang, Y., Qi, Y., Peng, B., Wang, H., Fu, L., Song, M., Chen, P., Gao, W., Ren, B., Sun, Y., Cai, T., Feng, X., Sui, J., Li, W. (2012): Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife 1: e00049. DOI: https://doi.org/10.7554/eLife.00049

Francois, H. T. D., Christen, V., Lin, S. h., Markus, H. H. (2010): Hepatitis C Virus–Induced Up-regulation of Protein Phosphatase 2A Inhibits Histone Modification and DNA Damage Repair. Hepatology 51: 741-751. DOI: https://doi.org/10.1002/hep.23388

Gong, S. J., Feng, X. J., Song, W. H., Chen, J. M., Wang, S. M., Xing, D. J., Zhu, M. H., Zhang, S. H., Xu, A. M. (2016): Upregulation of PP2Ac predicts poor prognosis and contributes to aggressiveness in hepatocellular carcinoma. Cancer Biol Ther 17: 151–162. DOI: https://doi.org/10.1080/15384047.2015.1121345

He, C., Qiu, Y., Han, P., Chen, Y., Zhang, L., Yuan, Q., Zhang, T., Cheng, T., Yuan, L., Huang, C., Zhang, S., Yin, Z., Peng, X.-E., Liang, D., Lin, X., Lin, Y., Lin, Z., Xia, N. (2018): ER stress regulating protein phosphatase 2A-B56γ, targeted by hepatitis B Virus X protein, induces cell cycle arrest and apoptosis of hepatocytes Chengyong. Cell Death Dis 9: 762. DOI: https://doi.org/10.1038/s41419-018-0787-3

Downloads

Published

2022-05-29

How to Cite

Zare, M., Sadeghi, M., Moradi-Shahrbabak, M., Safari, A., Moridi, M., & Nosratjou, M. (2022). A NOVEL MUTATION IN PPP2CA GENE AND ITS ASSOCIATION WITH FAT TAIL STORAGE AND CARCASS TRAITS IN SHEEP. Journal of Applied Biological Sciences, 16(2), 283–295. https://doi.org/10.71336/jabs.967

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.