POLYPHENOLS AND ANTIBACTERIAL ACTIVITY OF XANTHORIA PARIETINA (L.) Th. Fr. METHANOL EXTRACTS UNDER LEAD STRESS

Abstract views: 78 / PDF downloads: 149

Authors

  • Ouahiba Benhamada university of Jijel, Algeria
  • Nabila Benhamada
  • Essaid Leghouchi

Keywords:

Antibacterial activity, flavonoids, lead, lichen, polyphenols

Abstract

The main objective of this study was to investigate the variations in the content of polyphenols and flavonoids in lead-stressed X. parietina (L.) Th. Fr. lichen and to study the antibacterial activity of its methanol extract, Lichen thalli have been incubated at lead concentrations of 0, 0.5, 1.0, 5.0 and 10.0 mM for 96 hours. The antibacterial activity of methanol extract was evaluated against three Gram-positive bacteria (Bacillus cereus, Staphylococcus aureus and Listeria monocytogenes) and five Gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium, Pseudomonas aeruginosa and Enterobacter spp.) The analysis of the obtained results data showed that X. parietina is able to accumulate lead correlating with Pb(NO3)2 availability in the substrate, it also highlight that lead-induced stress causes significant increase in polyphenol and flavonoid contents with increasing Pb(NO3)2 concentrations, but with high concentrations, polyphenol and flavonoid contents decrease . Furthermore, results show a positive correlation between the polyphenol, flavonoid contents and the variations of the size of the inhibition zone diameter. Based on these results, Gram-negative bacteria were shown to be more resistant to the extracts than Gram-positive- bacteria.

References

Honegger, R. (1991): Functional aspects of the lichen symbiosis. Annual Review of Plant Biology 42: 553–578.

Nash III, T. (Ed.). (2008): Lichen Biology (2nd ed.). Cambridge: Cambridge University Press.

Mitrović, T., Stamenkovic, S., Cvetković, V., Nikolic, M., Tošić, S., Stojičić, D. (2011): Lichens As Source of Versatile Bioactive Compounds. Biologica Nyssana 2(1): 1-6.

Calcott, M.J., Ackerley, D.F., Knight, A., Keyzers, R.A, Owen, J.G. (2018): Secondary metabolism in the lichen symbiosis. Chemical Society Reviews 47: 1730-1760. DOI: https://doi.org/ 10.1039/c7cs00431a.

Bosch-Roig, P., Barca, D., Crisci, G.M., Lalli, C. (2013): Lichens as bioindicators of atmospheric heavy metal deposition in Valencia, Spain. Journal of Atmospheric Chemistry 70(4)/ 373–388. DOI: https://doi.org/10.1007/s10874-013-9273-6.

Kar, S., Samal, A.C., Maity, J.P., Santra, S.C. (2014): Diversity of epiphytic lichens and their role in sequestration of atmospheric metals. International Journal of Environmental Sciences and Technology 11(6): 899-908. DOI: https://doi.org/ 10.1007/s13762-013-0270-8.

Loppi, S. (2014): Lichens as sentinels for air pollution at remote alpine areas (Italy). Enviromental Science and Pollution Research 21: 2563-2571. DOI: https://doi.org/10.1007/s11356-013-2181-0.

Kuldeep, S., Prodyut, B. (2015): Lichen as a bio-indicator tool for assessment of climate and air pollution vulnerability: Review. International Research Journal of Environment Sciences 4 (12): 107-117.

Pescott, O.L., Simkin, J.M., August, T.A., Randle, Z., Dore, A.J., Botham, M.S. (2015): Air pollution and its effects on lichens, bryophytes, and lichens-feeding Lipedoptera: review and evidence from biological records. Biological journal of the Linnean Society 115(3): 611-635. DOI: https://doi.org/10.1111/bij.12541.

Sulaiman, N., Fuzy, S.F.F.M, Muis, S.I.N.A., Ismail, B.S (2018): Use of lichens as bioindicators for determining atmospheric heavy metal concentration in Malaysia. Pakistan Journal of Botany 50(1): 421-428.

Benítez, A., Medina, J., Vásquez, C., Loaiza, T., Luzuriaga, Y., Calva, J. (2019): Lichens and Bromeliads as Bioindicators of Heavy Metal Deposition in Ecuador. Lichen Diversity and Biomonitoring 11(2): 28. DOI:https://doi.org/10.3390/d11020028.

Mohamed, E., Mohamed, L., Abdelhay, E.G. (2020): Using calcicolous and corticolous lichens to assess lead and cadmium air pollution of the Moroccan Atlantic Coast Safi-Essaouira. Polish Journal of Environmental Studies 29(1): 779-787. DOI: https://doi.org/10.15244/pjoes/102629.

Quijano-Abril, M.A., Ramirez, D.M., Domínguez Rave, M.I., Londoño, J. (2021): Lichens as biosensors for the evaluation of urban and sub-urban air pollution in a tropical mountain valley, Rionegro, Antioquia. Revista Bionatura 6(1): 1501-1509. DOI: http://dx.doi.org/10.21931/RB/2021.06.01.10.

Mukemre, M., Zengin, G., Turker, R.S., Aslan, A., Dalar, A. (2021): Biological activities and chemical composition of Xanthoria lichens from Turkey. International Journal of Secondary Metabolite 8(4): 376–388. DOI: https://doi.org/10.21448/ijsm.994427.

Maciąg, D.M., Węgrzyn, G., Guzow, K.B. (2014): Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis. FEMS Microbiology Letters 353 (1): 57–62. DOI: https://doi.org/ 10.1111/1574-6968.12409.

Gandhi, A.D., Umamahesh, K., Sathiyaraj, S., Suriyakala, G., Velmurugan, R., Al Farraj, D.A., Gawwad, M.R.A., Murugan, K., Babujanarthanam, R., Saranya, R. (2022): Isolation of bioactive compounds from lichen Parmelia sulcata and evaluation of antimicrobial property. Journal of Infection and Public Health 15, (4): 491-497. DOI: https://doi.org/10.1016/j.jiph.2021.10.014.

Sargsyan, R., Gasparyan, A., Tadevosyan, G., Panosyan, H. (2021): Antimicrobial and antioxidant potentials of non-cytotoxic extracts of corticolous lichens sampled in Armenia. AMB Express 11(1), 110. DOI: https://doi.org/10.1186/s13568-021-01271-z.

Rodríguez, E.M., Marante, F.G.T., Hernández, J.C., Barrera, J.B., Rosa, F.J.E. (2016): Antioxidant activity of polyphenols from hypogymnia tavaresii D. Hawksw. and P. James. Quimica Nova 39(4), 456-461. DOI: https://doi.org/10.5935/0100-4042.20160053.

Gessner, D.K., Ringseis, R., Eder, K. (2017): Potential of plant polyphenols to combat oxidative stress and inflammatory processes in farm animals. Journal of Animal Physiology and Animal Nutrition 101(4): 605-628. DOI: https://doi.org/10.1111/jpn.12579.

Kandelinskaya, O., Grischenko, H., Hihinyak, Y., Andreev, M., Convey, P., Lukashanets, D., Kozel, N., Prokopiev, I. (2021): Chemical compounds and antioxidant activity of Antarctic lichens. Antarctic Science 34(1): 3-15. DOI: https://doi.org/10.1017/S0954102021000511.

Stromsnes, K., Lagzdina, R., Olaso-Gonzalez, G., Gimeno-Mallench, L., Gambini1, J. (2021): Pharmacological Properties of Polyphenols: Bioavailability, Mechanisms of Action, and Biological Effects in In Vitro Studies, Animal Models, and Humans. Biomedicines 9(8): 1074. DOI: https://doi.org/10.3390/biomedicines9081074.

Singh, S., Kaur, I., Kariyat, R. (2021): The Multifunctional Roles of Polyphenols in Plant-Herbivore Interactions. International Journal of Molecular Sciences 22 (3): 1442. DOI: https://doi.org/10.3390/ijms22031442.

Kiani, R, Arzani, A, Maibody, S. A. M. (2021): Polyphenols, Flavonoids, and Antioxidant Activity Involved in Salt Tolerance in Wheat, Aegilops cylindrica and Their Amphidiploids. Frontiers in Plant Science 12: 646221. DOI: https://doi.org/10.3389/fpls.2021.646221.

Tuladhar, P. Sasidharan, S., Saudagar, P. (2021): 17 - Role of phenols and polyphenols in plant defense response to biotic and abiotic stresses. Biocontrol Agents and Secondary Metabolites 419-441. DOI: https://doi.org/10.1016/B978-0-12-822919-4.00017-X.

Kołton, A., Długosz-Grochowska, O., Wojciechowska, R., Czaja, M. (2022): Biosynthesis Regulation of Folates and Phenols in Plants. Scientia Horticulturae, 291, 110561. DOI: https:// doi.org/10.1016/j.scienta.2021.110561.

Nugraha, A.S., Pratoko, D.K., Damayanti, Y.D., Lestari, N.D., Laksono, T.A., Addy, H.S., Untari, L.F., Kusumawardani, B., Wangchuk, P. (2019): Antibacterial and Anticancer Activities of Nine Lichens of Indonesian Java Island. Journal of Biologically Active Products from Nature 9(1):39-46. Doi: https://doi.org/10.1080/22311866.2019.1567383.

Solárová, Z., Liskova, A., Samec, M., Kubatka, P., Büsselberg, D., Solár, P. (2020): Anticancer Potential of Lichens’ Secondary Metabolites. Biomolecules, 10(1), 87. DOI: https://doi.org/10.3390/biom10010087.

Chae, H.J., Kim, G.J., Deshar, B., Kim, H.J., Shin, M.J., Kwon, H., Youn, U.J., Nam, J.W., Kim, S.H., Choi, H., Suh, S.S. (2021): Anticancer Activity of 2-O-caffeoyl Alphitolic Acid Extracted from the Lichen Usnea barbata 2017-KL-10. Molecules, 26(13), 3937. DOI: https://doi.org/10.3390/molecules26133937.

Šeklić, D.S., Jovanović, M.M, Virijević, K.D., Grujić, J.N, Živanović, M.N., Marković, S.D.(2022): Pseudevernia furfuracea inhibits migration and invasion of colorectal carcinoma cell lines. Journal of Ethnopharmacology 287(10), 114758, DOI: https://doi.org/10.1016/j.jep.2021.114758.

Nobile, V., Schiano, I., Peral, A., Giardina, S., Spartà, E., Caturla, N. (2021): Antioxidant and reduced skin-ageing effects of a polyphenol-enriched dietary supplement in response to air pollution: a randomized, double-blind, placebo-controlled study. Food and Nutrition Research 65:10.29219/fnr.v65.5619. DOI: https://doi.org/10.29219/fnr.v65.5619.

Li, Y., Lv, H., Xue, C., Dong, N., Bi, C., Shan, A. (2021): Plant Polyphenols: Potential Antidotes for Lead Exposure. Biological Trace Element Research 199: 3960–3976. DOI: https://doi.org/10.1007/s12011-020-02498-w.

Carreras, H.A. and Pignata M.L. (2007): Effects of the heavy metals Cu2+, Ni2+, Pb2+, and Zn2+ on some physiological parameters of the lichen Usnea amblyoclada. Ecotoxicology and Environmental Safety 67(1):59-66. DOI: https://doi.org/10.1016/j.ecoenv.

Dzubaj, A., Backor, M., Tomko, J., Peli, E., Tuba, Z. (2008): Tolerance of the lichen Xanthoria parietina (L.) Th. Fr. to metal stress. Ecotoxicology and Environmental Safety 70(2): 319-26. DOI: https://doi org/10.1016/j.ecoenv.

Ajila, C.M., Brar, S.K., Verma, M. (2011): Extraction and analysis of polyphenols: Recent trends. Critical Reviews in Biotechnology 31 (3): 227-249. DOI: https://doi.org/10.3109/07388551.2010.513677.

Owen, P.L., Johns, T. (1999): Xanthine oxidase inhibitory activity of northeastern North American plant remedies used forgout. Journal of Ethnopharmacology 64,149-160. DOI: https://doi.org/10.1016/s0378-8741(98)00119-6.

Qasim, M., Aziz, I., Rasheed, M., Gul, B., Khan, M. (2016): Effect of extraction solvents on polyphenols and antioxidant activity of medicinal halophytes, Pakistan Journal of Botany 48(2), 621-627.

Nakilcioglu, T.E., Otles, S. (2021): Influence of extraction solvents on thepolyphenol contents, compositions, and antioxidant capacities of fig (Ficus carica L.) seeds. Annals of the Brazilian Academy of Sciences Printed 93(1), 1678-2690. DOI: https://doi.org/10.1590/0001-3765202120190526.

Slinkard, K., Singleton, V.L. (1977): Total Phenol Analysis: Automation and Comparison with Manual Methods, American Journal of Enology and Viticulture 28(1): 49-55.

Meda, A., Lamien, CE., Romito, M., Millogo, J., Nacoulma, O.G. (2005): Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan Honey, as well as their radical scavenging activity. Food Chemistry 91(3): 571-577. DOI: https://doi.org/10.1016/j.foodchem.2004.10.006.

Nigussie, D., Davey, G., Legesse, BA., Fekadu, A., Makonnen, E. (2021): Antibacterial activity of methanol extracts of the leaves of three medicinal plants against selected bacteria isolated from wounds of lymphoedema patients. BMC Complementary Medicine and Therapies 3;21(1):2. DOI: https://doi.org/10.1186/s12906-020-03183-0. PMID: 33390165; PMCID: PMC7778819.

Kassim, A., Omuse, G., Premji, Z., Revath, G. (2016): Comparison of Clinical Laboratory Standards Institute and European Committee on Antimicrobial Susceptibility Testing guidelines for the interpretation of antibiotic susceptibility at a university teaching hospital in Nairobi, Kenya: A cross-sectional study. Annals of Clinical Microbiology and Antimicrobials 15, 21. DOI: https://doi.org/10.1186/s12941-016-0135-3.

Wayne (2018): CLSI. M100: performance standards for antimicrobial susceptibility testing. Report No. 1-56238-838-X, Clinical and Laboratory Standards Institute.

Devi, G.K., Anantharaman, P., Kandasamy, K., Balasubramanian, T. (2011): Antimicrobial activities of the lichen Roccella belangeriana (Awasthi) from mangroves of Gulf of Mannar. Indian Journal of Marine Sciences 40(3): 449-453.

Caggiano, R., Trippetta, S., Sabia, S. (2015): Assessment of atmospheric trace element concentrations by lichen-bag near an oil/gas pre-treatment plant in the Agri Valley (southern Italy). Natural Hazards and Earth System Sciences 15(2): 325-333. DOI: https://doi.org/10.5194/nhess-15-325-2015.

Darnajoux, R., Lutzoni, F., Miadlikowska, J., Bellenger, J.P. (2015): Determination of elemental baseline using peltigeralean lichens from Northeastern Canada (Québec): Initial data collection for long term monitoring of the impact of global climate change on boreal and subarctic area in Canada. Science of the Total Environment 533: 1-7. Doi: https://doi.org/10.1016/j.scitotenv.2015.06.030.

Belguidoum, A., Lograda, T., Ramdani, M. (2021): Ability of metal trace elements accumulation by Lichens, Xanthoria parietina and Ramalina farinacea, in Megres area (Setif, Algeria). Acta Scientifica Naturalis 8(1): 91-108. DOI: https://doi.org/10.2478/asn-2021-0008.

Sujetovienė, G., Česynaitė, J. (2021): Assessment of air pollution at the indoor environment of a shooting range using lichens as biomonitors. Journal of Toxicology and Environmental Health 84(7): 273-287. DOI: https://doi.org/10.1080/15287394.2020.1862006.

Khedim, I., Reguieg Yssaad, HA., Bülent, T., Osmane, B., Tadjouri, H. (2020): Accumulation of polyphenols and flavonoids in Atriplex canescens (Pursh) Nutt stressed by heavy metals (zinc, lead and cadmium). Malaysian Journal of Fundamental and Applied Sciences 16(3): 334-337. DOI: https://doi.org/ 10.11113/mjfas.

Ren, T., Zheng, P., Zhang, K., Liao, J., Xiong, F., Shen, Q., Ma, Y., Fang, W., Zhu, X. (2021): Effects of GABA on the polyphenol accumulation and antioxidant activities in tea plants (Camellia sinensis L.) under heat-stress conditions. Plant Physiology and Biochemistry 159: 363-371. DOI: https://doi.org/10.1016/j.plaphy.2021.01.003.

Kısa, D., Elmastaş, M., Öztürk, l., Kayir, O. (2016): Responses of the phenolic compounds of Zea mays under heavy metal stress. Applied Biological Chemistry 59(64): 813–820. DOI: https://doi.org/10.1007/s13765-016-0229-9.

Harangozo, L., Timoracká, M., Árvay, J., Bajčan, D., Tomáš, J., Trebichalský, P., Zupka, S. (2014): The Influence of Lead on the Content of Polyphenols in Seed of Flax Under Model Conditions. Journal of Microbiology, Biotechnology and Food Sciences 3(1): 215-217.

Benhabiles, A.E.H., Bellout, Y., Amghar, F. (2020): Effect of cadmium stress on the polyphenol content, morphological, physiological, and anatomical parameters of common bean (Phaseolus vulgaris L.). Applied Ecology and Environmental Research 18(2): 3757-3774.

Mamat, D.D., Chong, C.S., Samad, A.A., Chai, T.T., Manan, F.A., (2015): Effects of copper on total phenolics, flavonoids and mitochondrial properties of Orthosiphon stamineus callus culture. International Journal of Agriculture and Biology 17(6): 1243–1248. DOI: https://doi.org/10.17957/IJAB/15.0038.

Procházková, D., Bousová, I., Wilhemová, N. (2011): Antioxidant and prooxidant properties of flavonoids. Fitoterapia 82, 513-523. DOI: https://doi.org/10.1016/j.fitote.2011.01.018.

Sharma, B., Singh, S., Siddiqi, N.J. (2014): Biomedical Implications of Heavy Metals Induced Imbalances in Redox Systems. Biomed Research International 640754, DOI: https://doi.org/10.1155/2014/640754.

Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., Bitto, A. (2017): Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicine and Cell Longevity 8416763. DOI: https://doi.org/10.1155/2017/8416763.

Kısa, D. (2018): The Responses of Antioxidant System against the Heavy Metal-Induced Stress in Tomato. Süleyman Demirel University Journal of Natural and Applied Sciences 22(1). DOI: https://doi.org/10.19113/sdufbed.52379.

Basile, A., Rigano, D., Loppi, S., Di Santi, A., Nebbioso, A., Sorbo, S., Conte, B., Paoli, L., De Ruberto, F., Molinari, A.M., Altucci, L., Bontempo, P. (2015): Antiproliferative, antibacterial and antifungal activity of the lichen Xanthoria parietina and its secondary metabolite parietin. International Journal of Molecular Sciences 16(4):7861-7875. DOI: https://doi.org/10.3390/ijms16047861.

Alqahtani, M.A., Al Othman, M.R., Mohammed, A.E. (2020): Bio fabrication of silver nanoparticles with antibacterial and cytotoxic abilities using lichens. Scientific Reports 10(16), 16781. DOI: https://doi.org/10.1038/s41598-020-73683-z.

Ranković, B., Kosanić, M., Manojlović, N., Rančić, A., Stanojković, T. (2014): Chemical composition of Hypogymnia physodes lichen and biological activities of some its major metabolites. Medicinal Chemistry Research 23(36): 408–416. DOI: https://doi.org/10.1007/s00044-013-0644-y.

Coppo, E., Marchese, A. (2014): Antibacterial Activity of Polyphenols, Current Pharmaceutical Biotechnology 15(4): 380-390. DOI: https://doi.org/10.2174/138920101504140825121142.

Akpinar, A.U., Ozturk, S., Sinirtas, M. (2009): Effects of some terricolous lichens (Cladonia rangiformis Hoffm., Peltigera neckerii Hepp ex Müll. Arg., Peltigera rufescens (Weiss) Humb.) on soil bacteria in natural conditions. Plant Soil and Environment 55(4): 154-158. DOI: https://doi.org/10.17221/1616-PSE.

Popovici, V., Bucur, L., Calcan, S.I., Cucolea, E.I., Costache, T., Rambu, D. Schröder, V., Gîrd, C.E., Gherghel, D., Vochita, G., Caraiane, A., Badea, V. (2022): Elemental Analysis and In Vitro Evaluation of Antibacterial and Antifungal Activities of Usnea barbata (L.) Weber ex F.H. Wigg from Călimani Mountains, Romania. Plants 11(1), 32. DOI: https://doi.org/10.3390/plants11010032.

Alghazeer, R., Fauzi, W., Entesar, A., Fatiem, G., Salah, A. (2013): Screening of antibacterial activity in marine green, red and Brown macroalgae from the Western coast of Libya. Natural Science 5 (1): 7-14. DOI: https://doi.org/ 10.4236/ns.2013.51002.

Chen, H., Xu, Y., Chen, H., Liu, H., Yu, Q., Han, L. (2022): Isolation and identification of polyphenols from fresh sweet sorghum stems and their antibacterial mechanism against foodborne pathogens. Frontiers in Bioengineering and Biotechnology 9. DOI: https://doi.org/10.3389/fbioe.2021.770726.

Vollmer, W., Blanot, D., de Pedro., MA. (2008): Peptidoglycan structure and architecture. FEMS Microbiology Reviews 32(2):149-67. DOI: https://doi.org/10.1111/j.1574-6976.2007.00094.x. Epub 2008 Jan 8. PMID: 18194336.

Aghraz, A., Albergamo, A., Benameur, Q., Salvo, A., Larhsini, M., Markouk, M., Gervasi, T., Cicero, N. (2020): Polyphenols contents, heavy metals analysis and in vitro antibacterial activity of extracts from Cladanthus arabicus and Bubonium imbricatum of Moroccan Origin. Natural Product Research 34(1): 63-70. DOI: https://doi.org/10.1080/14786419.2019.1573424.

Downloads

Published

2022-09-28

How to Cite

Benhamada, O., Benhamada, N., & Leghouchi, E. (2022). POLYPHENOLS AND ANTIBACTERIAL ACTIVITY OF XANTHORIA PARIETINA (L.) Th. Fr. METHANOL EXTRACTS UNDER LEAD STRESS. Journal of Applied Biological Sciences, 16(3), 537–552. Retrieved from https://jabsonline.org/index.php/jabs/article/view/1071

Issue

Section

Articles