GLYCOINFORMATICS APPROACH FOR IDENTIFYING TARGET POSITIONS TO INHIBIT INITIAL BINDING OF SARS-COV-2 S1 PROTEIN TO THE HOST CELL

Abstract views: 66 / PDF downloads: 195

Authors

Keywords:

CD209L ̶ α-mannose interaction, 3D glycoprotein structure, O-glycosylation, phosphorylation, molecular docking

Abstract

COVID-19 outbreak is still threatening the public health. Therefore, in the middle of the pandemic, all kind of knowledge on SARS-CoV-2 may help us to find the solution. Determining the 3D structures of the proteins involved in host-pathogen interactions are of great importance in the fight against infection. Besides, post-translational modifications of the protein on 3D structure should be revealed in order to understand the protein function since these modifications are responsible for the host-pathogen interaction. Based on these, we predicted O-glycosylation and phosphorylation positions using full amino acid sequence of S1 protein. Candidate positions were further analyzed with enzyme binding activity, solvent accessibility, surface area parameters and the positions determined with high accuracy rate were used to design 3D O-glycoprotein structure of the S1 protein using carbohydrate force field. In addition, the interaction between the C-type lectin CD209L and α-mannose residues was examined and carbohydrate recognition positions were predicted. We suggest these positions as a potential target for the inhibition of the initial binding of SARS-CoV-2 S1 protein to the host cell.

References

Belouzard, S., Chu, V. C., Whittaker G. R. (2009): Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proceedings of the National Academy of Sciences 106(14): 5871-5876. https://doi.org/10.1073/pnas.0809524106.

Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., Veesler, D. (2020): Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181(2): 281-292. 10.1016/j.cell.2020.02.058.

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Müller, M. A., Drosten, C., Pöhlmann, S. (2020): SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181(2): 271-280. https://doi.org/10.1016/j.cell.2020.02.052.

Wong, S. K., Li, W., Moore, M. J., Choe, H., Farzan, M. (2004): A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. Journal of Biological Chemistry 279(5): 3197-3201. 10.1074/jbc.C300520200.

Jeffers, S. A., Tusell, S. M., Gillim-Ross, L., Hemmila, E. M., Achenbach, J. E., Babcock, G. J., Thomas Jr., W. D., Thackray, L. B., Yung, M. D., Mason, R. J., Ambrosino, D. M., Wentworth, D. E., DeMartini, J. C., Holmes, K. V. (2004): CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proceedings of the National Academy of Sciences 101(44): 15748-15753. https://doi.org/10.1073/pnas.0403812101.

Dambuza, I. M., Brown, G. D. (2015): C-type lectins in immunity: recent developments. Current Opinion in Immunology 32:21-27. https://doi.org/10.1016/j.coi.2014.12.002.

Drickamer, K., Taylor, M. E. (2015): Recent insights into structures and functions of C-type lectins in the immune system. Current Opinion in Structural Biology 34:26-34. https://doi.org/10.1016/j.sbi.2015.06.003.

Brown, G.D., Willment, J. A., Whitehead, L. (2018): C-type lectins in immunity and homeostasis. Nature Reviews Immunology 18:374-389. https://doi.org/10.1038/s41577-018-0004-8.

Alvarez, C. P., Lasala, F., Carrillo, J., Muñiz, O., Corbí, A. L., Delgado, R. (2002): C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. Journal of Virology 76(13): 6841-6844. doi: 10.1128/JVI.76.13.6841-6844.2002.

Lin, G., Simmons, G., Pöhlmann, S., Baribaud, F., Ni, H., Leslie, G. J., Haggarty, B. S., Bates, P., Weissman, D., Hoxie, J. A., Doms, R. W. (2003): Differential N-linked glycosylation of human immunodeficiency virus and Ebola virus envelope glycoproteins modulates interactions with DC-SIGN and DC-SIGNR. Journal of Virology 77(2): 1337-1346. doi: 10.1128/JVI.77.2.1337-1346.2003.

Cormier, E. G., Durso, R. J., Tsamis, F., Boussemart, L., Manix, C., Olson, W. C., Gardner, J. P., Dragic, T. (2004): L-SIGN (CD209L) and DC-SIGN (CD209) mediate transinfection of liver cells by hepatitis C virus. Proceedings of the National Academy of Sciences 101(39): 14067-14072. https://doi.org/10.1073/pnas.0405695101.

Marzi, A., Gramberg, T., Simmons, G., Möller, P., Rennekamp, A. J., Krumbiegel, M., Geier, M., Eisemann, J., Turza, N., Saunier, B., Steinkasserer, A., Becker, S., Bates, P., Hofmann, H., Pöhlmann, S. (2004): DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus. Journal of Virology 78(21): 12090-12095. https://doi.org/10.1128/JVI.78.21.12090-12095.2004.

Jeffers, S. A., Hemmila, E. M., Holmes, K. V. (2006): Human coronavirus 229E can use CD209L (L-SIGN) to enter cells. In: Perlman, S., Holmes, K. V. (ed.) The Nidoviruses. Advances in Experimental Medicine and Biology, Springer, Boston: MA, USA.

Londrigan, S. L., Turville, S. G., Tate, M. D., Deng, Y. M., Brooks, A. G., Reading, P. C. (2011): N-linked glycosylation facilitates sialic acid-independent attachment and entry of influenza A viruses into cells expressing DC-SIGN or L-SIGN. Journal of Virology 85(6): 2990-3000. doi: 10.1128/JVI.01705-10.

Sugrue, R. J. (2007): Glycovirology Protocols. Methods in Molecular Biology, Vol. 379, Humana Press, Totowa, New Jersey.

Duan, L., Zheng, Q., Zhang, H., Niu, Y., Lou, Y., Wang, H. (2020): The SARS-CoV-2 Spike Glycoprotein Biosynthesis, Structure, Function, and Antigenicity: Implications for the Design of Spike-Based Vaccine Immunogens. Frontiers in Immunology 11:576622. https://doi.org/10.3389/fimmu.2020.576622.

Sanda, M., Morrison, L., Goldman, R. (2021): N- and O‑Glycosylation of the SARS-CoV‑2 Spike Protein. Analytical Chemistry 93:2003-2009. https://doi.org/10.1021/acs.analchem.0c03173.

Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., Graham, B. S., McLellan, J. S. (2020): Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367(6483): 1260-1263. DOI: 10.1126/science.abb2507.

Uemura, S., Kurose, T., Suzuki, T., Yoshida, S., Ito, M., Saito, M., Horiuchi, M., Inagaki, F., Igarashi, Y., Inokuchi, J. (2006): Substitution of the N-glycan function in glycosyltransferases by specific amino acids: ST3Gal-V as a model enzyme. Glycobiology 16(3): 258-270. https://doi.org/10.1093/glycob/cwj060.

Schultz, M. J., Swindall, A. F., Bellis, S. L. (2012): Regulation of the metastatic cell phenotype by sialylated glycans. Cancer and Metastasis Reviews 31(3-4): 501-518. https://doi.org/10.1007/s10555-012-9359-7.

Varki, A., Cummings, R. D, Esko, J. D., Stanley, P., Hart, G.W. et al. (ed.) Essentials of Glycobiology (2015): Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, USA.

Steentoft, C., Vakhrushev, S. Y., Joshi, H. J., Kong, Y., Vester‐Christensen, M. B., Schjoldager, K. G., Lavrsen, K., Dabelsteen, S., Pedersen, N. B., Marcos-Silva, L., Gupta, R., Bennett, E. P., Mandel, U., Brunak, S., Wandall, H. H., Levery, S. B., Clausen, H. (2013): Precision mapping of the human O‐GalNAc glycoproteome through SimpleCell technology. The EMBO Journal 32(10): 1478-1488. https://doi.org/10.1038/emboj.2013.79.

Gupta, R., Brunak, S. (2001): Prediction of glycosylation across the human proteome and the correlation to protein function. Pacific Symposium on Biocomputing 7, 310-322.

Gerken, T. A., Raman, J., Fritz, T. A., Jamison, O. (2006): Identification of common and unique peptide substrate preferences for the UDP-GalNAc: polypeptide α-N-acetylgalactosaminyltransferases T1 and T2 derived from oriented random peptide substrates. Journal of Biological Chemistry 281(43): 32403-32416. https://doi.org/10.1074/jbc.M605149200.

Gerken, T. A., Jamison, O., Perrine, C. L., Collette, J. C., Moinova, H., Ravi, L., Markowitz, S. D., Shen, W., Patel, H., Tabak, L. A. (2011): Emerging paradigms for the initiation of mucin-type protein O-glycosylation by the polypeptide GalNAc transferase family of glycosyltransferases. Journal of Biological Chemistry 286(16): 14493-14507. doi: 10.1074/jbc.M111.218701.

Blom, N., Gammeltoft, S., Brunak, S. (1999): Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. Journal of Molecular Biology 294(5): 1351-1362. https://doi.org/10.1006/jmbi.1999.3310.

Petersen, B., Petersen, T. N., Andersen, P., Nielsen, M., Lundegaard, C. (2009): A generic method for assignment of reliability scores applied to solvent accessibility predictions. BMC Structural Biology 9(1): 51. https://doi.org/10.1186/1472-6807-9-51.

Adamczak, R., Porollo, A., Meller, J. (2004): Accurate prediction of solvent accessibility using neural networks–based regression. Proteins: Structure, Function, and Bioinformatics 56(4): 753-767. https://doi.org/10.1002/prot.20176.

Zhang, Y. (2008): I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9(1): 40. https://doi.org/10.1186/1471-2105-9-40.

Kirschner, K. N., Yongye, A. B., Tschampel, S. M., González‐Outeiriño, J., Daniels, C. R., Foley, B. L., Woods, R. J. (2008): GLYCAM06: a generalizable biomolecular force field. Carbohydrates. Journal of Computational Chemistry 29(4): 622-655. https://doi.org/10.1002/jcc.20820.

Nivedha, A. K., Makeneni, S., Foley, B. L., Tessier, M. B., Woods, R. J. (2014): Importance of ligand conformational energies in carbohydrate docking: Sorting the wheat from the chaff. Journal of Computational Chemistry 35(7): 526-539. https://doi.org/10.1002/jcc.23517.

Taylor, M. E., Drickamer, K. (2006): Introduction to Glycobiology, 3rd edition. Oxford University Press, London, UK.

Pierce, B. G., Wiehe, K., Hwang, H., Kim, B. H., Vreven, T., Weng, Z. (2014): ZDOCK server: interactive docking prediction of protein–protein complexes and symmetric multimers. Bioinformatics 30(12): 1771-1773. https://doi.org/10.1093/bioinformatics/btu097.

Snyder, G. A., Colonna, M., Sun, P. D. (2005): The structure of DC-SIGNR with a portion of its repeat domain lends insights to modeling of the receptor tetramer. J. of Mol. Bio. 347(5): 979-989. doi: 10.1016/j.jmb.2005.01.063.

Pérez, S., Sarkar, A., Rivet, A., Breton, C., Imberty, A. (2015): Glyco3D: a portal for structural glycosciences. In: Lütteke, T., Frank, M. (ed.) Glycoinformatics, Humana Press New York, USA doi: 10.1007/978-1-4939-2343-4_18.

Krissinel, E., Henrick, K. (2007): Inference of macromolecular assemblies from crystalline state. Journal of Molecular Biology 372(3): 774-79. https://doi.org/10.1016/j.jmb.2007.05.022.

Feinberg, H., Mitchell, D. A., Drickamer, K., Weis, W. I. (2001): Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR. Science 294(5549): 2163-2166. doi: 10.1126/science.1066371.

Li, Y., Liu, D., Wang, Y., Su, W., Liu, G., Dong, W. (2021): The Importance of Glycans of Viral and Host Proteins in Enveloped Virus Infection. Frontiers in Immunology 12:638573. https://doi.org/10.3389/fimmu.2021.638573.

Iwashkiw, J. A., Seper, A., Weber, B. S., Scott, N. E., Vinogradov, E., Stratilo, C., Reiz, B., Cordwell, S. J., Whittal, R., Schild, S., Feldman, M. F. (2012): Identification of a General O-linked Protein Glycosylation System in Acinetobacter baumannii and Its Role in Virulence and Biofilm Formation. Plos Pathogens 8(6):e1002758. https://doi.org/10.1371/journal.ppat.1002758.

Mayr, J., Lau, K., Lai, J. C. C., Gagarinov, I. A., Shi, Y., McAtamney, S., Chan, R. W. Y., Nicholls, J., Itzstein, M., Haselhorst, T. (2018): Unravelling the Role of O-glycans in Influenza A Virus Infection. Scientific Reports 8:16382. https://doi.org/10.1038/s41598-018-34175-3.

Cumming, D. A. (2003): Pathways and functions of mammalian protein glycosylation. New Comprehensive Biochemistry 38: 433-455. https://doi.org/10.1016/S0167-7306(03)38026-3.

Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., Garry, R. F. (2020): The proximal origin of SARS-CoV-2. Nature Medicine 26: 450-452. https://doi.org/10.1038/s41591-020-0820-9.

Bagdonaite, I., Wandall, H. H. (2018). Global aspects of viral glycosylation. Glycobiology 28(7): 443-467. doi: 10.1093/glycob/cwy021.

Bretana, N. A., Lu, C. T., Chiang, C. Y., Su, M. G., Huang, K. Y., Lee, T. Y., Weng, S. L. (2012): Identifying protein phosphorylation sites with kinase substrate specificity on human viruses. PloS One 2012 7(7): e40694. https://doi.org/10.1371/journal.pone.0040694.

Davidson, A. D., Kavangh Williamson, M., Lewis, S., Shoemark, D., Carroll, M. W., Heesom, K. J., Zambon, M., Ellis, J., Lewis, P: A., Hiscox, J. A., Matthews, D. A. (2020): Characterisation of the transcriptome and proteome of SARS-CoV-2 reveals a cell passage induced in-frame deletion of the furin-like cleavage site from the spike glycoprotein. Genome Medicine 12:68. https://doi.org/10.1186/s13073-020-00763-0.

Blom, N., Sicheritz‐Pontén, T., Gupta, R., Gammeltoft, S., Brunak, S. (2004): Prediction of post‐translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4(6): 1633-1649. https://doi.org/10.1002/pmic.200300771.

Hart, G. W., Kreppel, L. K., Comer, F. I., Arnold, C. S., Snow, D. M. (1996): O-GlcNAcylation of key nuclear and cytoskeletal proteins: reciprocity with O-phosphorylation and putative roles in protein multimerization. Glycobiology 6(7): 711-716. https://doi.org/10.1093/glycob/6.7.711.

François, K. O., Balzarini, J. (2010): Potential of carbohydrate-binding agents as therapeutics against enveloped viruses. Medicinal Research Reviews 32(2): 349-387. https://doi.org/10.1002/med.20216.

Balzarini, J., Herrewege, Y. V., Vermeire, K., Vanham, G., Schols, D. (2007): Carbohydrate-binding agents efficiently prevent dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN)-directed HIV-1 transmission to T lymphocytes. Molecular Pharmacology 71(1): 3-11. doi: 10.1124/mol.106.030155.

Bertaux, C., Daelemans, D., Meertens, L., Cormier, E. G., Reinus, J. F., Peumans, W. J., Van Damme, E. J. M., Igarashi, Y., Oki, T., Schols, D., Dragic, T., Balzarini, J. (2007): Entry of hepatitis C virus and human immunodeficiency virus is selectively inhibited by carbohydrate-binding agents but not by polyanions. Virology 366(1): 40-50. https://doi.org/10.1016/j.virol.2007.04.008.

Alen, M., Schols, D., Broad antiviral activity of carbohydrate-binding agents against dengue virus infection in Fa-Chang, C. (ed.) (2012): Carbohydrates-Comprehensive Studies on Glycobiology and Glycotechnology IntechOpen doi: 10.5772/50631.

Osborn, H. M. I., Evans, P. G., Gemmell, N., Osborne, S. D. (2004): Carbohydrate-based therapeutics. Journal of Pharmacy and Pharmacology 56(6): 691-702. https://doi.org/10.1211/0022357023619.

Cipolla, L., Araujo, A. C., Bini, D., Gabrielli, L., Russo, L., Shaikh, N. (2010): Discovery and design of carbohydrate-based therapeutics. Expert Opinion on Drug Discovery 5(8): 721-737. https://doi.org/10.1517/17460441.2010.497811.

Fernandez-Tejada, A., Canada, F. J., Jimenez-Barbero, J. (2015): Recent developments in synthetic carbohydrate-based diagnostics, vaccines, and therapeutics. Chemistry 21(30): 10616-28. https://doi.org/10.1002/chem.201500831.

Raska, M., Czernekova, L., Moldoveanu, Z., Zachova, K., Elliott, M. C., Novak, Z., Hall, S., Hoelscher, M., Maboko, L., Brown, R., Smith, P. D., Mestecky, J., Novak, J. (2014): Differential glycosylation of envelope gp120 is associated with differential recognition of HIV-1 by virus-specific antibodies and cell infection. AIDS Research and Therapy 11(23): 1-16. https://doi.org/10.1186/1742-6405-11-23.

Downloads

Published

2022-01-23

How to Cite

Uslupehlivan, M., & Şener Uslupehlivan, E. (2022). GLYCOINFORMATICS APPROACH FOR IDENTIFYING TARGET POSITIONS TO INHIBIT INITIAL BINDING OF SARS-COV-2 S1 PROTEIN TO THE HOST CELL. Journal of Applied Biological Sciences, 16(1), 89–101. Retrieved from https://jabsonline.org/index.php/jabs/article/view/950

Issue

Section

Articles