IN VITRO AND IN SILICO CYTOTOXICITY EVALUATION OF SOME ISATIN MANNICH BASES ON HUMAN MELANOMA CELLS

Abstract views: 97 / PDF downloads: 204

Authors

Keywords:

Apoptosis, , cytotoxicity, , isatin mannich bases, , melanoma, , molecular docking,

Abstract

Mannich bases tend to suppress cell proliferation in damaged tissues because of particular metal chelation properties. Amine components of isatin mannich bases - piperidine (P1), morpholine (P2) and N-methyl piperazine (P3) – were evaluated for their cytotoxicity potentials on melanoma cells. P1, P2 and P3 products were purified using crystallization and characterized by NMR. Human melanoma cells (G361) were produced in DMEM medium including 10% FBS, 1% penicillin/streptomycin at 37°C and 5% CO2 conditions. Compounds were applied to medium containers separated to 24 pieces plates as 1x105 melanoma cells/well for 24 hours. Expression levels of caspase-3, p53 and β-actin were investigated from RNA samples by qRT-PCR. Mannich bases were efficient at 20, 20 and 50 μg/ml concentrations for P1, P2 and P3, respectively. P2 (20 μg/ml) showed the highest cytotoxic effect with 92 percent. The most significant increase in p53 gene expression was carried out by P2 product with 6.78 fold compared to control group. P2 also upregulated caspase-3 expression by 9.72 fold. Newly synthesized Mannich bases, especially P2, were found to have antitumor potential. Moreover, molecular docking studies revealed that P2 is a potent allosteric activator of caspase-3. However, there is need for in vivo trials and extensive researches to fully elucidate the molecular bioefficacies of these molecules.

References

Gallagher, W.M., Bergin, O.E., Rafferty, M., Kelly, Z.D., Nolan, I.M., Fox, E.J., Culhane, A.C., McArdle, L., Fraga, M.F., Hughes, L., Currid, C.A., O'Mahony, F., Byrne, A., Murphy, A.A., Moss, C., McDonnell, S., Stallings, R.L., Plumb, J.A., Esteller, M., Brown, R., Dervan, P.A., Easty, D.J. (2005): Multiple markers for melanoma progression regulated by DNA methylation: insights from transcriptomic studies. Carcinogenesis, 26(11): 1856-67.

Kaufmann, R. (2000): Surgical management of primary melanoma. Clin. Exp. Dermatol., 25(6): 476-481.

Menendez, D., Inga, A., Resnick, M.A. (2009): The expanding universe of p53 targets. Nat. Rev. Cancer, 9(10): 724–737.

Vousden, K.H., Prives, C. (2009): Blinded by the light: the growing complexity of p53. Cell, 137(3): 413-431.

Dothager, R.S., Putt, K.S., Allen, B.J., Leslie, B.J., Nesterenko, V., Hergenrother, P.J. (2005): Synthesis and identification of small molecules that potently induce apoptosis in melanoma cells through G1 cell cycle arrest. J. Am. Chem. Soc., 127(24): 8686-8696.

Rigel, D.S., Carucci, J.A. (2000): Malignant melanoma: prevention, early detection, and treatment in the 21st century. CA Cancer J. Clin., 50(4): 215-236.

Smith, M.B.; March, J. (2007): Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 6th ed.; Wiley & Sons: New York,

Koksal, M., Gokhan, N., Kupeli, E., Yesilada, E., Erdogan, H. (2007): Analgesic and antiinflammatory activities of some new Mannich bases of 5-nitro-2-benzoxazolinones. Archives of Pharmacal Research, 30(4): 419–424.

Sriram, D., Bal, T.R., Yogeeswari, P. (2005): Synthesis, antiviral and antibacterial activities of isatin Mannich bases. Med. Chem. Res., 14: 211-228.

Ashok, M., Holla, B.S., Poojary, B. (2007): Convenient one pot synthesis and antimicrobial evaluation of some new Mannich bases carrying 4-methylthiobenzyl moiety. European Journal of Medicinal Chemistry, 42(8): 1095–1101.

Pandeya, S.N., Sriram, D., Nath, G., De Clercq, E. (2000): Synthesis, antibacterial, antifungal and anti-HIV activities of norfloxacin Mannich bases. European Journal of Medicinal Chemistry, 35(2): 249–255.

Gul, H.I., Vepsalainen, J., Gul, M., Erciyas, E., Hanninen, O. (2000): Cytotoxic activities of mono and bis Mannich bases derived fromacetophenone against Renca and Jurkat cells. Pharmaceutica Acta Helvetiae, 74(4): 393–398.

Ivanova, Y., Momekov, G., Petrov, O., Karaivanova, M., Kalcheva, V. (2007): Cytotoxic Mannich bases of 6-(3-aryl-2-propenoyl)- 2(3H)-benzoxazolones. European Journal of Medicinal Chemistry, 42(11-12): 1382–1387.

Dimmock, J.R., Kumar, P. (2010): Anticancer and cytotoxic properties of Mannich bases. Chem. Inform., 28(45): https://doi.org/10.1002/chin.199745335.

Ozgun, D.O., Yamali, C., Gul, H.I., Taslimi, P., Gulcin, I., Yanik, T., Supuran, C.T. (2016): Inhibitory effects of isatin Mannich bases on carbonic anhydrases, acetylcholinesterase, and butyrylcholinesterase. J. Enzyme Inhib. Med. Chem., 31(6): 1498-501.

Huan, L.C., Phuong, C.V., Truc, L.C., Thanh, V.N., Pham-The, H., Huong, L.T., Thuan, N.T., Park, E.J., Ji, A.Y., Kang, J.S., Han, S.B., Tran, P.T., Nam, N.H. (2019): (E)-N’-Arylidene-2-(4-oxoquinazolin-4(3H)-yl) acetohydrazides: Synthesis and evaluation of antitumor cytotoxicity and caspase activation activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1): 465–478.

Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, 2016; Impact, Schrödinger, LLC, New York, NY, 2016; Prime, Schrödinger, LLC, New York, NY, 2019.

Bal, S., Kaya, R., Gok, Y., Taslimi, P., Aktaş, A., Karaman, M., Gulcin, I. (2020): Novel 2-methylimidazolium Salts: Synthesis, Characterization, Molecular Docking, and Carbonic Anhydrase and Acetylcholinesterase Inhibitory Properties. Bioorganic Chemistry, 94: 103468.

Kalin, R., Koksal, Z., Kalin, P., Karaman, M., Gulcin, I., Ozdemir, I. (2020): In vitro effects of standard antioxidants on lactoperoxidase enzyme-A molecular docking approach. Journal of Biochemical and Molecular Toxicology, 34(1): e22421, doi: 10.1002/jbt.22421.

LigPrep, Schrödinger, LLC, New York, NY, 2019.

Induced Fit Docking protocol; Glide, Schrödinger, LLC, New York, NY, 2016; Prime, Schrödinger, LLC, New York, NY, 2019.

Bayindir, S., Caglayan, C., Karaman, M., Gülcin, I. (2019): The green synthesis and molecular docking of novel N-substituted rhodanines as effective inhibitors for carbonic anhydrase and acetylcholinesterase enzymes. Bioorganic Chemistry, 90, 103096: doi: 10.1016/j.bioorg.2019.103096.

Bayrak, Ç., Taslimi, P., Karaman, H.S., Gülçin, I., Menzek, A. (2019): The first synthesis carbonic anhydrase inhibition and anticholinergic activities of some bromophenol derivatives with S including natural products. Bioorganic Chemistry, 85: 128-139.

Cerchia, C., Lavecchia, A. (2017): Small molecule drugs and targeted therapy for melanoma: current strategies and future directions. Curr. Med. Chem., 24(21): 2312-44.

Populo, H., Soares, P., Lopes, J.M. (2012): Insights into melanoma: targeting the mTOR pathway for therapeutics. Expert Opin. Ther. Targets, 16(7): 689–705.

Fang, M., Zhu, D., Luo, C., Li, C., Zhu, C., Ou, J., Li, H., Zhou, Y., Huo, C., Liu, W., Peng, J., Peng, Q., Mo, Z. (2018): In vitro and in vivo anti-malignant melanoma activity of Alocasia cucullata via modulation of the phosphatase and tensin homolog/phosphoinositide 3-kinase/AKT pathway. J. Ethnopharmacol., 213: 359-365.

Holla, B.S., Veerendra, B., Shivananda, M.K., Poojary, B. (2003): Synthesis characterization and anticancer activity studies on some Mannich bases derived from 1,2,4-triazoles. Eur. J. Med. Chem., 38(7-8): 759-767.

Rana, S., Blowers, E.C., Tebbe, C., Contreras, J.I., Radhakrishnan, P., Kizhake, S. (2016): Isatin Derived Spirocyclic Analogues with α-Methylene-γ-butyrolactone as Anticancer Agents: A Structure-Activity Relationship Study. J. Med. Chem., 59(10): 5121-5127.

Kucukoglu, K., Gul, H.I., Cetin-Atalay, R., Baratli, Y., Charles, A.L., Sukuroglu, M., Gul, M., Geny, B. (2014): Synthesis of new N,N'-bis[1-aryl-3-(piperidine-1-yl) propylidene] hydrazine dihydrochlorides and evaluation of their cytotoxicity against human hepatoma and breast cancer cells. J. Enzyme Inhib. Med. Chem., 29(3): 420-426.

Wang, X.M., Xu, J., Xin, M.H., Lu, S.M., Zhang, S.Q. (2015): Design, synthesis and anti-proliferative activity evaluation of m-(4-morpholinyl-1,3,5-triazin-2-yl)benzamides in vitro. Bioorg. Med. Chem. Letts., 25(8): 1730–1735.

Porter, A.G., Jänicke, R.U. (1999): Emerging roles of caspase-3 in apoptosis. Cell Death Differ., 6(2): 99-104.

Nicholson, D.W., Ali, A., Thornberry, N.A., Vaillancourt, J.P., Ding, C.K., Gallant, M., Gareau, Y., Griffin, P.R., Labelle, M., Lazebnik, Y.A., Munday, N.A., Raju, S.M., Smulson, M.E., Yamin, T.T., Yu, V.L., Miler, D.K. (1995): Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature, 376(6535): 37-43.

Fares, M., Eldehna, W.M., Abou-Seri, S.M., Abdel-Aziz, H.A., Aly, M.H., Tolba, M.F. (2015): Design, synthesis and in vitro antiproliferative activity of novel isatinquinazoline hybrids. Arch. Pharm., 348(2): 144-154.

Vedarethinam, V., Dhanaraj, K., Ilavenil, S., Arasu, M.V., Choi, K.C., Al-Dhabi, N.A., Srisesharam, S., Lee, K.D., Kim D.H., Dhanapal, T., Sivanesan, R., Choi, H.S., Kim, Y.O. (2016): Antitumor Effect of the Mannich Base(1,3-bis-((3-Hydroxynaphthalen-2-yl)phenylmethyl)urea) on Hepatocellular Carcinoma. Molecules, 21(5): 632. doi: 10.3390/molecules21050632.

Szebeni, G.J., Balázs, A., Madarász, I., Pócz, G., Ayaydin, F., Kanizsai, I., Fajka-Boja, R., Alföldi, R., Hackler, L., Puskás, L.G. (2017): Achiral Mannich-Base Curcumin Analogs Induce Unfolded Protein Response and Mitochondrial Membrane Depolarization in PANC-1 Cells. Int. J. Mol. Sci., 18(10): 2105.

Gupta, N., Sharma, S., Raina, A., Bhushan, S., Malik, F.A., Sangwan, P.L. (2017): Synthesis of Novel Mannich Derivatives of Bakuchiol as Apoptotic Inducer through Caspase Activation and PARP‐1 Cleavage in A549 Cells. Chemistry Select, 2(18): 5196 – 5201.

Zilfou, J.T., Lowe, S.W. (2009): Tumor Suppressive Functions of p53. Cold Spring Harb. Perspect Biol., 1(5): a001883. doi: 10.1101/cshperspect.a001883.

Essmann, F., Schulze-Osthoff, K. (2012): Translational approaches targeting the p53 pathway for anti-cancer therapy. Br. J. Pharmacol., 165(2): 328–344.

Jackson, J.G., Post, S.M., Lozano, G. (2011): Regulation of tissue‐ and stimulus‐specific cell fate decisions by p53 in vivo. J. Pathol., 223(2): 127‐136.

Lee, J.T., Herlyn, M. (2012): MEK’ing the most of p53 reactivation therapy in melanoma. J. Invest. Dermatol., 132(2): 263–265.

Bennett, D.C. (2008): How to make a melanoma: what do we know of the primary clonal events? Pigment Cell Melanoma Res., 21(1): 27–38.

Cheok, C.F., Verma, C.S., Baselga, J., Lane, D.P. (2011): Translating p53 into the clinic. Nat. Rev. Clin. Oncol., 8: 25–37.

Davidovich, P., Aksenova, V., Petrova, V., Tentler, D., Orlova, D., Smirnov, S., Gurzhiy, V., Okorokov, A.L., Garabadzhiu, A., Melino, G., Barlev, N., Tribulovich, V. (2015): Discovery of Novel Isatin-Based p53 Inducers. ACS Med. Chem. Lett., 6(8): 856-60.

Nandy, A., Dey, S.K., Das, S., Munda, R.N., Dinda, J., Saha, K.D. (2014): Gold (I) N-heterocyclic carbene complex inhibits mouse melanoma growth by p53 upregulation. Mol Cancer., 13: 57.

Chimienti, F., Seve, M., Richard, S., Mathieu, J., Favier, A. (2001): Role of cellular zinc in programmed cell death. Temporal relationship between zinc depletion, activation of caspases, and cleavage of Sp family transcription factors. Biochem. Pharmacol., 62(1): 51–62.

Rudolf, E., Cervinka, M. (2010): Zinc pyrithione induces cellular stress signaling and apoptosis in Hep-2 cervical tumor cells: the role of mitochondria and lysosomes. Biometals, 23(2): 339–354.

Kondoh, M., Tasaki, E., Takiguchi, M., Higashimoto, M., Watanabe, Y., Sato, M. (2005): Activation of caspase-3 in HL-60 cells treated with pyrithione and zinc. Biol. Pharm. Bull., 28(4): 757–759.

Peterson, Q.P., Goode, D.R., West, D.C., Ramsey, K.N., Lee, J.J., Hergenrother, P.J. (2009): PAC-1 activates procaspase-3 in vitro through relief of zinc-mediated inhibition. J. Mol. Biol., 388(1): 144–158.

Velázquez-Delgado E.M., Hardy, J.A. (2012): Zinc-mediated Allosteric Inhibition of Caspase-6. The Journal of Biological Chemistry, 287(43): 36000–11.

Huan, C.L., Tran, P.T., Phuong, C.V., Duc, P., Anh, D.T., Hai, P.T., Huong, L.T.T., Thuan, N.T., Lee, H.J., Park, E.J., Kang, J.S., Linh, N.P., Hieu, T.T., Oanh, D.T.K., Han, S.B., Nam, N.H. (2019): Novel 3,4-Dihydro-4-oxoquinazoline-based Acetohydrazides: Design, Synthesis and Evaluation of Antitumor Cytotoxicity and Caspase Activation Activity. Bioorganic Chemistry, 92: 103202.

Downloads

Published

2022-01-23

How to Cite

Isgor, M. M., Kucukgul, A., Karaman, M., Ozmen Ozgun, D., Yanik, T., Gul, H. I., & Bulgurcu, M. (2022). IN VITRO AND IN SILICO CYTOTOXICITY EVALUATION OF SOME ISATIN MANNICH BASES ON HUMAN MELANOMA CELLS. Journal of Applied Biological Sciences, 16(1), 102–114. Retrieved from https://jabsonline.org/index.php/jabs/article/view/968

Issue

Section

Articles