MITOCHONDRIAL COI GENE-BASED MOLECULAR IDENTIFICATION AND PHYLOGENETIC ANALYSIS IN THIRTEEN DRAGONFLIES (ODONATA: LIBELLULIDAE) OF BANGLADESH
Abstract views: 84 / PDF downloads: 36Keywords:
Dragonfly, COI gene, Identification, Phylogeny, BangladeshAbstract
Dragonflies serve as essential predators in Integrated Pest Management (IPM). Nevertheless, polymorphism, sexual dimorphism, and body color changes make dragonfly species identification difficult. The application of the mitochondrial cytochrome c oxidase I (COI) gene to identify dragonflies is effective. In the present study, COI gene sequences of thirteen species from the family Libellulidae were generated. The COI gene sequences of twelve dragonfly species were 98% to 99% similar to the gene sequences of their respective species, according to BLAST analysis. Only one species, Brachydiplax farinosa, did not match significantly to any sequences in GenBank. Then, all thirteen sequences were submitted to GenBank, where only B. farinosa's sequence was submitted for the first time. Using MEGA10 and BioEdit, a 569bp COI gene fragment with 369 conserved sites, 200 variable sites, and 167 parsimony-informative sites was identified. The average base composition of the COI sequences was 35.43% T, 17.65 % C, 29.83% A, and 17.07% G. While there was a significant AT bias (65.26%) among dragonfly species. Pairwise distance analysis and phylogenetic tree was used to explore genetic diversity and evolutionary relationships among dragonfly species. The thirteen dragonfly species had 0.119-0.231% interspecific genetic divergence. A phylogenetic tree using the Neighbor-Joining (NJ) algorithm revealed two major clades, A and B, and demonstrated that all dragonfly species shared a common ancestor. These two clades encompass all twelve species, except Tholymis tillarga. Subsequently, a TCS haplotype network unveiled the genetic relatedness of these thirteen dragonflies, with T. tillarga exhibiting the highest number of mutations (49) in the analysis. T. tillarga has experienced significant genetic adaptation over time and could be an excellent model organism to study numerous biological processes. In addition, this work also supports to build a complete DNA barcode database in GenBank and uses DNA barcoding to identify thirteen dragonflies from Bangladesh.
References
Bashar, K., Reza, M.S., Razzak, M.A., Rahman, K.M.Z., Goda, P., Howlader, A.J. (2014): Faunistic study of Odonata (Dragonfly & Damselfly) in some selected regions of Bangladesh. Journal of Entomology and Zoology Studies 2 (4): 1-6.
Khan, M.K. (2015a): Gynacantha subinterrupta Rambur, 1842: an addition to the odonates (Insecta: Odonata: Aeshnidae) of Bangladesh. Journal of Threatened Taxa 7(10): 7704-7705.
Khan, M.K. (2015b): Dragonflies and damselflies (Insecta: Odonata) of the northeastern region of Bangladesh with five new additions to the Odonata fauna of Bangladesh. Journal of Threatened Taxa 7(11): 7795-7804.
Habib, M.S.A., Hossain, M.M., Iqbal, K.F., Khan, T., Islam, M.S., Saif, S., Jewel, M.M.M. (2016): Dragonflies and Damselflies of Bangladesh, Inventory-First Phase. Jiban Bikash Karjocrom. 96 pp.
Subramanian, K.A., Babu, R. (2017): Checklist of Odonata (Insecta) of India. Zoological Survey of India. Version 3.0. 1-51.
Kalkman, V.J., Babu, R., Bedjanič, M., Conniff, K., Gyeltshen, T., Khan, M.K., Subramanian, K.A., Zia, A., Orr, A.G. (2020): Checklist of the dragonflies and damselflies (Insecta: Odonata) of Bangladesh, Bhutan, India, Nepal, Pakistan and Sri Lanka. Zootaxa 4849 (1): 1-84.
Walia, G.K., Singh, H. (2022): A review on intraspecific karyomorphological variations of m chromosomes in family Libellulidae (Anisoptera: Odonata). The Journal of Basic and Applied Zoology 83: 47.
Mitra, A., Thinley, P. (2005): The Odonata of Bumdeling National Park. Department of Forests and Park Services, Ministry of Agriculture and Forests.
Kenny, L.P., Burne, M.R. (2001): A Field Guide to the Animals of Vernal Pools. Natural Heritage and Endangered Species Program. Westborough, MA.
McGeoch, M.A. (1998): The selection, testing and application of terrestrial
insects as bioindicators. Biological Reviews 73:181-201.
Simaika, J.P., Samways, M.J. (2012): Using dragonflies to monitor and prioritize lotic systems: a South African perspective. Org Divers Evol 12: 251-259.
Li, L., Zheng, B., Liu, L. (2010): Biomonitoring and Bioindicators Used for River Ecosystems: Definitions, Approaches and Trends. Procedia Environmental Sciences 2: 1510-1524.
Buss, D.F., Carlisle, D.M., Chon, T.S., Joseph, C., Harding, J.S., Hanneke, E.K., Wayne, A.R., Stephanie, S., Christa, T., Robert, M.H. (2015): Stream biomonitoring using macroinvertebrates around the globe: a comparison of large-scale programs. Environ Monit. Assess 187(1): 4132.
Brunelle, P.M. (1999): Distribution of Damselflies and Dragonflies (Odonata) of Maine, United States. Northeastern Naturalist 6 (2): 95-118.
Hebert, P.D.N., Cywinska, A., Ball, S. L., deWaard, J.R. (2003a): Biological identifications through DNA barcodes. Proceedings of the Royal Society B. 270 (1512): 313–321.
Bady, P., Doledec, S., Fesl, C., Gayraud, S., Bacchi, M., Scholl, F. (2005): Use of invertebrate traits for the biomonitoring of European large rivers: the effects of sampling effort on genus richness and functional diversity. Freshwater Biology 50, 159-173.
Zhou, X., Robinson, J.L., Geraci, C.J., Parker, C.R., Flint Jr, O.S., Etnier, D.A., Hebert, P.D.N. (2011): Accelerated construction of a regional DNA-barcode reference library: Caddisflies (Trichoptera) in the Great Smoky Mountains National Park. Journal of the North American Benthological Society 30(1): 131-162.
Joly, S., Davies, T.J., Archambault, A., Bruneau, A., Derry, A., Kembel, S.W., Peres‐Neto, P., Vamosi, J., Wheeler, T.A. (2014): Ecology in the age of DNA barcoding: the resource, the promise and the challenges ahead. Molecular Ecology Resources 14(2): 221-232.
Koroiva, R., Gomes, V.G.N., Vilela, D.S. (2022): DNA Barcoding and New Records of Odonates (Insecta: Odonata) from Paraíba State, Brazil. Diversity 14: 203.
Lam, Y.T., Kamarudin, K.R, Zakaria, M.Z., Omar, M.S.S., Tokiman, L., Jahari P.N.S., Salleh, F.M. (2021): Mitochondrial Barcodes of Dragonflies and Damselflies Originated from Taman Negara Endau Rompin, Johor, Malaysia. International Conference on Biodiversity: Earth and Environmental Science 736: 012032.
Almansoori, N., Enan, M.R., Al-Deeb, M.A. (2019): Barcode of Life Data Systems (BOLD) Versus GenBank Molecular Identification of a Dragonfly from the UAE in Comparison to the Morphological Identification. OnLine Journal of Biological Sciences 19 (4): 237-244.
Ahmed, H.K., Kareem, D.K. (2024): Molecular identification of some species of dragonfly (Odonata: Anisoptera) using COXI gene and DNA barcodes from Basrah Province, Southern Iraq. Journal of Aquatic Research and Sustainability 1 (1): 8-14.
Waage, J.K. (1979): Dual function of the damselfly penis: sperm removal and transfer. Science 203: 916-918.
Hadrys, H., Schierwater, B., Dellaporta, S.L., Desalle, R., Buss, L.W. (1993): Determination of paternity in dragonflies by Random Amplified Polymorphic DNA fingerprinting. Molecular Ecology 2: 79-87.
Hadrys, H., Schroth, W., Schierwater, B., Streit, B., Fincke, O.M. (2005): Tree hole odonates as environmental monitors: Non-invasive isolation of polymorphic microsatellites from the neotropical damselfly Megaloprepus caerulatus. Conservation Genetics 6: 481-483.
Corbet, P.S. (2004): Dragonflies: Behaviour and Ecology of Odonata. Harley Books 829 pp.
Turgeon, J., Stoks, R., Thum, R.A., Brown, J.M., Mcpeek, M.A. (2005): Simultaneous Quaternary radiations of three damselfly clades across the Holarctic. The American Naturalist 165: E78-E107.
Córdoba-Aguilar, A. (2008): Dragonflies and damselflies: Model organisms for ecological and evolutionary research. Oxford: Oxford University Press.
Karthika, P., Vadivalagan, C., Gunasekaran, C., Anandhakumar, S. (2012): DNA Barcoding of selected dragonfly species (Libellulidae and Aeshnidae) for species authentication with phylogenetic assessment. European Journal of Experimental Biology 2 (6): 2158-2165.
Islam, S.U., Qasim, M., Lin, W., Islam, W., Arif, M., Ali, H., Du, Z., Wu, Z. (2018): Genetic interaction and diversity of the families Libellulidae and Gomphidae through COI gene from China and Pakistan. Acta Tropica 182: 92-99.
Chiriboga-Ortega, R., Heyden, C.V., Burgos, M.E.S., Ortega, S., Oña, T., Velarde, E., Goethals, P., Alfaro-Núñez, A. (2021): Molecular diversity of dragonflies in three high- elevation Andean tropical lakes through DNA barcoding. Biotropica 00:1–5.
Carle, F.L., Kjer, K.M., May, M.L. (2015): A molecular phylogeny and classification of Anisoptera (Odonata). Arthropod Systematics & Phylogeny 73 (2): 281-301.
Nisar, M.M., Muhammad, K., Mehmood, S.A., Ahmed, S., Murtaza, B.N., Nadeem, M.S. (2021): Morphological and phylogenetic evaluation of Libellulidae dragonflies from district Attock, Punjab, Pakistan. Intl J Agric Biol 26: 393-400.
Yong, H., Lim, P.E., Tan, J. (2014): Molecular phylogeny of Orthetrum dragonflies reveals cryptic species of Orthetrum pruinosum. Scientific Reports 4: 5553.
Fraser, F.C. (1933): Fauna of British India, including Ceylon and Burmah. Odonata. Vol. I. London: Taylor & Francis 433 pp.
Fraser, F.C. (1934): Fauna of British India, including Ceylon and Burmah. Odonata. Vol. II. London: Taylor & Francis 398 pp.
Fraser, F.C. (1936): Fauna of British India, including Ceylon and Burmah. Odonata. Vol. III. London: Taylor & Francis 461 pp.
Mitra, T.R. (2006): Handbook on Common Indian Dragonflies (Insecta: Odonata). Published by Zoological Survey of India ZSI. 124 pp.
Lahiri, A.R. (1987): Studies on the Odonate Fauna of Meghalaya. Zoological Survey of India, 402 pp.
Brower, A.V.Z. (1996): A new mimetic species of Heliconius (Lepidoptera: Nymphalidae), from southeastern Colombia, as revealed by cladistic analysis of mitochondrial DNA sequences. Zoological Journal of the Linnean Society 116: 317-332.
Hall, T.A. (1999): Bioedit- A user-friendly biological sequences alignment editor and analysis program for windows95/98/NT. Nucleic Acids Symposium Ser. 41: 95-98.
Kimura, M. (1980): A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111-120.
Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K. (2018): MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35: 1547-1549.
Saitou, N., Nei, M. (1987): The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406-425.
Win, N.Z., Choi, E.Y., Jang, D.J., Park, J., Park, J.K. (2015): Molecular comparison of the genus Junonia (Lepidoptera: Nymphalidae) in Myanmar. Journal of Asia-Pacific Biodiversity 8(4): 287-294.
Matt, H., Velasco, J. (2022): Phylogenetic Inference", The Stanford Encyclopedia of Philosophy (Fall 2022 Edition), Edward N. Zalta & Uri Nodelman (eds.).
Kapli, P., Flouri, T., Telford, M.J. (2021): Systematic errors in phylogenetic trees. Current Biology 31(2): R51-R66.
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., Flook, P. (1994): Evolution, Weighting and Phylogenetic Utility of Mitochondrial Gene Sequences and a Aompilation of Conserved Polymerase Chain Reaction Primers. Ann. Entomol. Soc. Am. 87: 651-701.
Clary, D.O., Wolstenholme, D.R. (1985): The mitochondrial DNA molecule of Drosophila yakuba: Nucleotide sequence, gene organization, and genetic code. Journal of Molecular Evolution 22(3): 252-271.
Crozier, R.H., Crozier, Y.C. (1993): The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome organization. Genetics 133(1): 97-117.
Avise, J.C. (2000): Phylogeography. The history and formation of species. Cambridge, MA. 447 pp.
Hebert, P.D.N., Ratnasingham, S., deWaard, J.R. (2003b): Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. B. 270 (Suppl): 96-99.
Zhao, X.C., Dong, J.F., Tang, Q.B., Yan, Y.H., Gelibic, I., Van Loon, J.J.A., Wang, C.Z. (2005): Hybridization between Helicoverpa armigera and Helicoverpa assulta (Lepidoptera: Noctuidae): Development and morphological characterization of F1 hybrids. Bull. Entomol. Res 95: 409-416.
Wu, H., Cao, L., He, M., Han, R., De Clercq, P. (2021): Interspecific Hybridization and Complete Mitochondrial Genome Analysis of Two Ghost Moth Species. Insects 12: 1046.
Sánchez-Guillén, R.A., Vega-Sánchez, Y.M., Sánchez-Herrera, M. (2022): Genetic structure, cryptic species, and hybridization: causes and evolutionary consequences in Odonata', in Alex Cordoba-Aguilar, Christopher Beatty, and Jason Bried (eds), Dragonflies and Damselflies: Model Organisms for Ecological and Evolutionary Research, 2nd edn (Oxford, 2022; online edn, Oxford Academic, 15 Dec. 2022).
Phillips, P., Swanson, B.J. (2018): A genetic analysis of dragonfly population structure. Ecol Evol 8(14): 7206–7215.
Cancellario, T., Miranda, R., Baquero, E., Fontaneto, D., Martínez, A., Mammola, S. (2022): Climate change will redefine taxonomic, functional, and phylogenetic diversity of Odonata in space and time. npj Biodiversity 1 (1): 1-14.
Hennig, W. (1981): Insect Phylogeny. Chichester, John Wiley 514 pp.
Carle, F.L. (1982): Evolution of the odonate copulatory process. Odonatologica 11: 271-286.
Carle, F.L. (1995): Evolution, taxonomy and biogeography of ancient Gondwanian libelluloids, with comments on anisopteroid evolution and phylogenetic systematics. Odonatologica 24: 383-424.
Nel, A., Martínez Delclòs, X., Placher, J.C., Henrotay, M. (1993): Les ‘Anisozygoptera’ fossiles – Phylogénie et classification (Odonata). Martinia Numéro Hors-Série 3: 1-311.
Carle, F.L., Kjer, K.M. (2002): Phylogeny of Libellula Linnaeus (Odonata: Insecta). Zootaxa 87: 1-18.
Rehn, A.C. (2003): Phylogenetic analysis of higher-level relationships of Odonata. Systematic Entomology 28: 181-239.
Blanke, A., Greve, C., Mokso, R., Beckman, F., Misof, B. (2013): An updated phylogeny of Anisoptera including formal convergence analysis of morphological characters. Systematic Entomology 38: 474 – 490.
Nisar, M.M., Muhammad, K., Mehmood, S.A., Ahmed, S., Murtaza, B.N., Nadeem, M.S. (2021): Morphological and Phylogenetic Evaluation of Libellulidae Dragonflies from District Attock, Punjab, Pakistan. Intl J Agric Biol 26(3): 393-400.
Laltanpuii, K., Lalremsanga, H.T., Babu, R., Senthil, K.N., Thomas, M. (2017): Distribution and Diversity of Libellulidae (Odonata:Anisoptera) from Indo-Burma Biodiversity Hotspot Region and their Phylogenetic Organization. Research & Reviews: Journal of Zoological Sciences 5 (1): 44-51.
Leigh, W., Bryant, D. (2015): POPART: full-feature software for haplotype network construction Jessica. Methods in Ecology and Evolution 6: 1110–1116.
Futahashia, R., Kawahara-Mikib, R., Kinoshitac, M., Yoshitaked, K., Yajimab, S., Arikawa, K., Fukatsu, T. (2015): Extraordinary diversity of visual opsin genesin dragonflies. PNAS E1247–E1256.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Applied Biological Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.