Abstract views: 81 / PDF downloads: 226



Red-pea gall wasp,, cyt b,, ITS2,, phylogeography,, Turkey,


Red-pea gall wasp, Cynips divisa, is an oak- dependent species with a wide distribution range in the Western Palearctic. In this study, we aimed to investigate the genetic diversity of the species across Anatolia and reveal possible factors that governed its contemporary phylogeographic pattern. For this purpose, we sequenced 433 base pairs of mitochondrial cytochrome b gene and the entire nuclear ITS2 region of 278 individuals collected from 22 localities. Our sequence data generated 115 cyt b haplotypes and 15 ITS2 alleles. Estimated genetic diversity for the species was well within the limits of other gall wasp species. Phylogenetic analysis pointed to a separation of C. divisa from outgroups around the Pliocene. Diversification estimates of main haplogroups show signals of major lineage divergences through the Quaternary period. Moreover, splits resulted in more shallow structuring during the last 780.000 years appear to play a key role in the geographic distribution of genetic diversity of red-pea gall wasp species in Anatolia. Our current results support the general view that phylogeography of the Anatolian cynipids has been mainly shaped in a period spanning the last few million years due mostly to changing paleoenvironmental conditions of the area.


Avise, J. C. (2004): Molecular markers, natural history, and evolution 2nd ed Sinauer Associates, Sunderland, MA.

Hewitt, G. M. (2000): The genetic legacy of the Quaternary ice ages. Nature 405:907.

Ansell, S. W., Stenøien, H.K., Grundmann, M., Russell, S. J., Koch, M. A., Schneider, H., Vogel, J. C. (2011): The importance of Anatolian mountains as the cradle of global diversity in Arabis alpine, a key arctic–alpine species. Annals of Botany 108:241-252.

Stone, G. N., Challis, R. J., Atkinson, R. J., Csóka, G., Hayward, A., Melika, G., Mutun, S., Preuss, S., Rokas, A., Sadeghi, E. (2007): The phylogeographical clade trade: tracing the impact of human‐mediated dispersal on the colonization of northern Europe by the oak gallwasp Andricus kollari. Molecular Ecology 16:2768-2781.

Rokas, A., Melika, G., Abe, Y., Nieves-Aldrey, J. L., Cook, J. M., Stone, G. N. (2003): Lifecycle closure, lineage sorting, and hybridization revealed in a phylogenetic analysis of European oak gallwasps (Hymenoptera: Cynipidae: Cynipini) using mitochondrial sequence data. Molecular Phylogenetics and Evolution 26:36-45.

Bayrak, S., Avcı, M. (2019): Gall forming Cynipini (Hymenoptera: Cynipidae) species in Isparta Oak Forests. Munis Entomology & Zoology 14: 552-564.

Melika, G. (2006): Gall Wasps of Ukraine: Cynipidae. Vols 1, 2. Schmalhausen Institute of Zoology. National Academy of Sciences of Ukraine, Kyiv.

Dinç, S., Mutun, S. (2019): Tracing imprints of past climatic fluctuations and heterogeneous topography in Cynips quercusfolii (Hymenoptera: Cynipidae) in Turkey. European Journal of Entomology 116.

Peakall, R., Smouse, P. E. (2006): GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6:288-295.

Librado, P., Rozas, J. (2009): DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451-1452.

Nei, M. (1987): Molecular evolutionary genetics. Columbia University Press.

Tajima, F. (1983): Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437-460.

Harpending, H. (1994): Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Human Biology 591-600.

Tajima, F. (1989): Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585-595.

Fu, Y-X., Li, W-H. (1993): Statistical tests of neutrality of mutations. Genetics 133 (3):693-709.

Excoffier, L., Lischer, H. E. (2010): Arlequin suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10:564-567.

Swofford, D. (2002): PAUP* version 4.0. Phylogenetic analysis using parsimony (and other methods).

Ronquist, F., Huelsenbeck, J. P. (2003): MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572-1574.

Darriba, D., Taboada, G. L., Doallo, R., Posada, D. (2012): jModelTest 2: more models, new heuristics, and parallel computing. Nature Methods 9:772.

Drummond, A. J., Suchard, M.A. (2010): Bayesian random local clocks, or one rate to rule them all. BMC Biology 8:114.

Papadopoulou, A., Anastasiou, I., Vogler, A. P. (2010): Revisiting the insect mitochondrial molecular clock: the mid-Aegean trench calibration. Molecular Biology and Evolution 27:1659-1672.

Hayward, A., Stone, G. N. (2006): Comparative phylogeography across two trophic levels: the oak gall wasp Andricus kollari and its chalcid parasitoid Megastigmus stigmatizans. Molecular Ecology 15:479-489.

Rambout, A. (2009): FigTree. Version 1.3.1. URL:

Zhang, D. X., Hewitt, G. M. (2003): Nuclear DNA analyses in genetic studies of populations: practice, problems, and prospects. Molecular Ecology 12:563-584.

Posada, D., Crandall, K. A. (2001): Intraspecific gene genealogies: trees grafting into networks. Trends in Ecology & Evolution 16(1): 37-45.

Teacher, A., Griffiths, D. (2011): HapStar: automated haplotype network layout and visualization, Molecular Ecology Resources 11(1): 151-153.

Mutun, S., Atay, G. (2015): Phylogeography of Trigonaspis synaspis (Hymenoptera: Cynipidae) from Anatolia based on mitochondrial and nuclear DNA sequences. European Journal of Entomology 112:259.

Şekercioğlu, Ç. H., Anderson, S., Akçay, E., Bilgin, R., Can, Ö. E., Semiz, G., Tavşanoğlu, Ç., Yokeş, M. B., Soyumert, A., Ipekdal, K. (2011): Turkey’s globally important biodiversity in crisis. Biological Conservation 144:2752-2769.

Zhang, J., Cai, Z., Huang, L. (2006): Population genetic structure of crimson snapper Lutjanus erythropterus in East Asia, revealed by analysis of the mitochondrial control region. ICES Journal of Marine Science 63:693-704.

Çıplak, B. (2008): The analogy between interglacial and global warming for the glacial relicts in a refugium: a biogeographic perspective for conservation of Anatolian Orthoptera. Insect Ecology and Conservation 135-163.

Jong, M. A., Wahlberg, N., Van Eijk, M., Brakefield, P. M., Zwaan, B. J. (2011): Mitochondrial DNA signature for range-wide populations of Bicyclus anynana suggests a rapid expansion from recent refugia. PloS one 6: e21385.

Rogers, A. R., Harpending, H. (1992): Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution 9:552-569.

Ferris, C., King, R., Hewitt, G. (1999): Isolation within species and the history of glacial refugia. Systematics Association Special Volume 57:20-34.

Mutun, S., Dinç, S., Çimen, E. (2019): Population genetic structure and phylogeography of the oak gall wasp Andricus chodjaii (Hymenoptera: Cynipidae) in Turkey as inferred from mitochondrial and nuclear DNA sequences. Zoology in the Middle East 65: 245-255.

Şenkul, Ç., Doğan, U. (2013): Vegetation and climate of Anatolia and adjacent regions during the Last Glacial period. Quaternary International 302:110-122.




How to Cite

Cimen, E., & Mutun, S. (2022). PALEOENVIRONMENT PLAYED KEY ROLE FOR THE ANATOLIAN POPULATIONS OF CYNIPS DIVISA (HYMENOPTERA: CYNIPIDAE). Journal of Applied Biological Sciences, 16(1), 13–23. Retrieved from